应用激光, 2016, 36 (4): 471, 网络出版: 2016-10-19   

高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展

Research Progress on Cracking Mechanism and Control of Laser Additive Repaired Nickel-based Superalloys with High Content of Al+Ti
作者单位
1 西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072
2 洛阳船舶材料研究所, 河南 洛阳 471023
3 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 江西 南昌 330063
引用该论文

李秋歌, 林鑫, 王杏华, 刘丰刚, 刘奋成, 杨海欧, 黄卫东. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展[J]. 应用激光, 2016, 36(4): 471.

Li Qiuge, Lin Xin, Wang Xinghua, Liu Fenggang, Liu Fencheng, Yang Haiou, Huang Weidong. Research Progress on Cracking Mechanism and Control of Laser Additive Repaired Nickel-based Superalloys with High Content of Al+Ti[J]. APPLIED LASER, 2016, 36(4): 471.

参考文献

[1] 傅恒志.铸钢和铸造高温合金及其熔炼[M].西安: 西北工业大学出版社, 1985: 171.

[2] YANG JINGJING, LI FANGZHI, WANG ZEMIN, et al.Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication[J].Journal of Materials Processing Technology, 2015(225): 229-239.

[3] 黄卫东.激光立体成形[M].西安: 西北工业大学出版社, 2007: 326.

[4] LUO T, ZHONG Y.Potential application of laser solid forming technology for fabrication of breeding blanket[J].Fusion Engineering and Design, 2012, 87(2): 128-133.

[5] SONG M, LIN X, YANG G, et al.Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming [J].Journal of Materials Processing Technology, 2014, 214(3): 701-709.

[6] HE B, LI D, ZHANG A, et al.Influence of oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming[J].Rapid Prototyping, 2013, 19(6): 446-451.

[7] ZHONG M, SUN H, LIU W, et al.Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J].Scripta Mater, 2005(53): 159-164.

[8] CARTER L N, MARTIN C, WITHERS P J, et al.The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J].J. Alloys Compd., 2014(615): 338-347.

[9] GAUMANN M, HENRY S, CLETON F, et al.Epitaxial laser metal forming: analysis of microstructure formation [J].Materials Science & Engineering: A, 1999, 271(1-2): 232-241.

[10] LINGENFELTER A C.Proceedings from materials solutions ’97 on joining and repair of gas turbine components: Indiana [C].Indianapolis, 1997: 3-6.

[11] HENDERSON M B, ARRELL D, HEOBEL M, et al.Nickel based superalloy welding practices for industrial gas turbine applications [J].Science Technology Welding Joining, 2004, 9(1): 13-21.

[12] 黄卫东, 林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展, 2010, 29(6): 12-27.

[13] 谢玉江, 王茂才, 王明生.高Al、Ti含量镍基高温合金激光、微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J].中国表面工程, 2010, 23(5): 1-16.

[14] DINDA G P, DASGUPTA A K.Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J].Materials Science and Engineering: A, 2009, 509(1-2): 98-104.

[15] WHITESELL H S, OVERFELT R A.Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247[J].Materials Science & Engineering: A, 2001, 318(1-2): 264-276.

[16] CHEN YUAN, ZHANG KE, HUANG JIAN, et al.Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J].Materials and Design, 2016(90): 586-594.

[17] LACHOWICZ M, DUDZINSKI W, RADZISZEWSKA M.TEM observation of the heat-affected zone in electron beam welded superalloy Inconel713C[J].Materials characterization, 2008, 59(5): 560-566.

[18] 王杏华.激光成形修复K465高温合金的基础研究[D].西安: 西北工业大学, 2014: 39.

[19] MONTAZERI M, GHAINI F M.The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding [J].Materials Characterization, 2012, 67(6): 65-73.

[20] RICHARDS N L, NAKKALIL R, CHATURVEDI M C.The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903[J].Metallurgical and Materials Transactions: A, 1994, 25(8): 1733-1745.

[21] OJO O A.Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition[J].Materials Science and Technology, 2007, 23(10): 1149-1155.

[22] PEPE J J, SAVAGE W F.Effects of constitutional liquation in 18-Ni maraging steel weldments[J].Welding Journal, Research supplement, 1967, 46(9): 411-426.

[23] DUVALL D S, OWCZARSKI W A.Further heat-affected-zone studies in heat-resistant nickel alloys[J].Welding Journal, Research supplement, 1967, 40(11): 46-58.

[24] OJO O A, CHATURVEDI M C.On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy[J].Materials Science and Engineering: A, 2005, 403(1): 77-86.

[25] OJO O A, RICHARDS N L, CHATURVEDI M C.Liquid film migration of constitutionally liquated γ′ in weld heat affected zone (HAZ) of Inconel 738LC superalloy[J].Scripta Materialia, 2004, 51(2): 141-146.

[26] TANCRET F.Thermo-Calc and dictra simulation of constitutional liquation of gamma prime (γ′) during welding of Ni base superalloys [J].Computational Materials Science, 2007, 41(1): 13-19.

[27] ATTALLAH M M, TERASAKI H, MOAT R J, et al.In-Situ observation of primary γ′ melting in Ni-base superalloy using confocal laser scanning microscopy[J].Materials Characterization, 2011, 62(8): 760-767.

[28] OJO O A, DING R G, CHATURVEDI M C.Laser beam weld microstructures in directionally solidified alloy IC6 [J].Intermetallics, 2008, 16(2): 188-197.

[29] VISHWAKARMA K R, RICHARDS N L, CHATURVEDI M C.Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC 718PLUS superalloy [J].Materials Science and Engineering: A, 2008, 480(1-2): 517-528.

[30] HUANG X, CHATURVEDI M C, RICHARDS N L.The effect of grain boundary segregation of boron in cast alloy IN718 on HAZ microfissuring[J].Acta Materialia, 1997, 8(45): 3095-3107.

[31] GHOSH S, CHOI J.Three-dimensional transient finite element analysis for residual stresses in the laser aided Direct metal/material deposition process[J].Journal of Laser Applications, 2005, 3(17): 144-158.

[32] JENDRZEJEWSKI R, SLIWINSKI G, KRAWCZUK M, et al.Temperature and stress fileds induced during laser cladding[J].Journal of Computers and Structures, 2004, 2(82): 653-658.

[33] PINKERTON A J, LI L.Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties[J].Journal of Thin Solid Films, 2004, 1(453): 471-476.

[34] YUSHCHENKO K A, SAVCHENKO V S.Classification and mechanisms of cracking in welding high-alloy steels and nickel alloys in brittle temperature ranges [J].Hot Cracking Phenomena in Welds II, 2008: 96-120.

[35] ALIMARDANI M, TOYSERKANI E, HUISSOON J P, et al.On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental-numerical investigation[J].Optics and Lasers in Engineering, 2009, 47(11): 1160-1168.

[36] DANIS Y, LACOSTE E, ARVIEU C.Numerical modeling of Inconel 738LC deposition welding: Prediction of residual stress induced cracking [J].Journal of Materials Processing Technology, 2010, 210(14): 2053-2061.

[37] LIU F, LIN X, HUANG C, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J].Journal of Alloys and Compounds, 2011, 509(13): 4505-4509.

[38] ZHONG M L, YANG L, LIU W J, et al.Laser rapid manufacturing of special pattern Inco 718 nickel-based alloy component [J].Proc of SPIE, 2005(5629): 59-66.

[39] 杨林, 钟敏霖, 黄婷, 等.激光直接制造镍基高温合金零件成形工艺的研究[J]. 应用激光, 2004, 24(6): 345-349.

[40] ZHONG M L, SUN H Q, LIU W J, et al.Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J].Scripta Materialla, 2005, 53(2): 159-164.

[41] 陈智君, 张群莉, 楼程华, 等.Inconel 738 激光熔覆层的裂纹控制方法[J].应用激光, 2013, 26(1): 7-13.

[42] IDOWU O A, OJO O A, CHATURVEDI M C.Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718 plus superalloy[J].Materials Science and Engineering: A, 2007(454): 389-397.

[43] OSOBA L O, OJO O A.Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy[J].Materials Science and Technology, 2012, 28(4): 431-436.

[44] 黄永俊.激光-感应复合熔覆工艺及机理研究[D].武汉: 华中科技大学, 2009: 28-78.

[45] GOODWATER F, HUYNH L D, KANG D S, et al.Interactive laser welding at elevated temperatures of superalloy articles[J].Materials characterization, 2001, 51(12): 69-74.

[46] 李晓莉, 刘文今.高温合金K403的激光熔覆研究[J].应用激光, 2002, 22(3): 283-286.

[47] 刘其斌, 朱维东, 陈江.高温合金激光熔覆涂层中裂纹防止方法的研究[J].贵州工业大学学报(自然科学版), 2000, 29(5): 56-59.

[48] 王刚.K465镍基合金叶片电子束钎焊修复及裂纹控制研究[D].哈尔滨: 哈尔滨工业大学, 2009: 22-73.

[49] 赵晓明.Rene88DT高温合金激光立体成形的组织与性能研究[D].西安: 西北工业大学, 2009: 40-63.

[50] ZHANG J, SINGER R F.Hot tearing of nickel-based superalloys during directional solidification[J].Acta Materialia, 2002, 50(7): 1869-1879.

[51] 温鹏, 荻崎贤二, 山本元道.基于在线观察的激光焊接凝固开裂纹敏感性研究[J].中国激光, 2011, 38(6): 106-111.

[52] PHILLION A B, COCKCROFT S L, LEE P D.X-ray micro-tomographic observations of hot tear damage in an Al-Mg commercial alloy [J].Scripta Materialia. 2006, 55(5): 489-492.

[53] PHILLION A B, HAMILTON R W, FULORIA D, et al.In situ X-ray observation of semi-solid deformation and failure in Al-Cu alloys [J].Acta Materialia, 2011, 59(4): 1436-1444.

李秋歌, 林鑫, 王杏华, 刘丰刚, 刘奋成, 杨海欧, 黄卫东. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展[J]. 应用激光, 2016, 36(4): 471. Li Qiuge, Lin Xin, Wang Xinghua, Liu Fenggang, Liu Fencheng, Yang Haiou, Huang Weidong. Research Progress on Cracking Mechanism and Control of Laser Additive Repaired Nickel-based Superalloys with High Content of Al+Ti[J]. APPLIED LASER, 2016, 36(4): 471.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!