应用激光, 2016, 36 (4): 471, 网络出版: 2016-10-19   

高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展

Research Progress on Cracking Mechanism and Control of Laser Additive Repaired Nickel-based Superalloys with High Content of Al+Ti
作者单位
1 西北工业大学 凝固技术国家重点实验室, 陕西 西安 710072
2 洛阳船舶材料研究所, 河南 洛阳 471023
3 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 江西 南昌 330063
摘要
高Al+Ti镍基高温合金由于具有良好的高温强度及耐腐蚀性能而被广泛应用于航空发动机的热端零部件, 然其服役环境恶劣, 在长期使用过程中极易发生损伤。激光增材修复技术因其可以实现对损伤构件复杂几何形状和力学性能的高效恢复, 已逐渐成为航空航天及民用燃机发动机热端部件修复的一条重要技术途径。不过, Al+Ti含量高也意味着合金在激光作用过程中具有较高的开裂敏感性, 易于导致修复失效。系统地介绍了国内外具有代表性的激光增材制造/修复高Al+Ti镍基高温合金过程中液化开裂的最新研究进展, 指出其目前存在的问题和今后主要的研究方向。
Abstract
Nickel-based superalloys with the high content of Al and Ti elements, which possess the excellent elevated temperature strength and the superior hot corrosion resistance, are thus widely used in aeroengines. But their components are damaged easily in severe service conditions. Laser additive repairing (LAR), which can accomplish the high effective recoveries of the complex geometrical shape and mechanical properties for the damaged parts, has gradually become an important technique for the repair of damaged aeroengine parts. However, for this kind of nickel-based superalloys, containing high content of Al and Ti elements also means that they have high cracking sensitivity in laser processing. In present papers, the typical latest research progress on liquation cracking of nickel-based superalloys with high Al+Ti content in the process of laser additive manufacturing/repairing is introduced systematically, and the main present problems and future research directions are pointed out as well.
参考文献

[1] 傅恒志.铸钢和铸造高温合金及其熔炼[M].西安: 西北工业大学出版社, 1985: 171.

[2] YANG JINGJING, LI FANGZHI, WANG ZEMIN, et al.Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication[J].Journal of Materials Processing Technology, 2015(225): 229-239.

[3] 黄卫东.激光立体成形[M].西安: 西北工业大学出版社, 2007: 326.

[4] LUO T, ZHONG Y.Potential application of laser solid forming technology for fabrication of breeding blanket[J].Fusion Engineering and Design, 2012, 87(2): 128-133.

[5] SONG M, LIN X, YANG G, et al.Influence of forming atmosphere on the deposition characteristics of 2Cr13 stainless steel during laser solid forming [J].Journal of Materials Processing Technology, 2014, 214(3): 701-709.

[6] HE B, LI D, ZHANG A, et al.Influence of oxidation on the cracks of DZ125L nickel-based superalloy thin-walled parts in laser metal direct forming[J].Rapid Prototyping, 2013, 19(6): 446-451.

[7] ZHONG M, SUN H, LIU W, et al.Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J].Scripta Mater, 2005(53): 159-164.

[8] CARTER L N, MARTIN C, WITHERS P J, et al.The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy[J].J. Alloys Compd., 2014(615): 338-347.

[9] GAUMANN M, HENRY S, CLETON F, et al.Epitaxial laser metal forming: analysis of microstructure formation [J].Materials Science & Engineering: A, 1999, 271(1-2): 232-241.

[10] LINGENFELTER A C.Proceedings from materials solutions ’97 on joining and repair of gas turbine components: Indiana [C].Indianapolis, 1997: 3-6.

[11] HENDERSON M B, ARRELL D, HEOBEL M, et al.Nickel based superalloy welding practices for industrial gas turbine applications [J].Science Technology Welding Joining, 2004, 9(1): 13-21.

[12] 黄卫东, 林鑫.激光立体成形高性能金属零件研究进展[J].中国材料进展, 2010, 29(6): 12-27.

[13] 谢玉江, 王茂才, 王明生.高Al、Ti含量镍基高温合金激光、微弧火花表面熔焊处理研究进展及解决熔焊裂纹的途径[J].中国表面工程, 2010, 23(5): 1-16.

[14] DINDA G P, DASGUPTA A K.Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability[J].Materials Science and Engineering: A, 2009, 509(1-2): 98-104.

[15] WHITESELL H S, OVERFELT R A.Influence of solidification variables on the microstructure, macrosegregation, and porosity of directionally solidified Mar-M247[J].Materials Science & Engineering: A, 2001, 318(1-2): 264-276.

[16] CHEN YUAN, ZHANG KE, HUANG JIAN, et al.Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J].Materials and Design, 2016(90): 586-594.

[17] LACHOWICZ M, DUDZINSKI W, RADZISZEWSKA M.TEM observation of the heat-affected zone in electron beam welded superalloy Inconel713C[J].Materials characterization, 2008, 59(5): 560-566.

[18] 王杏华.激光成形修复K465高温合金的基础研究[D].西安: 西北工业大学, 2014: 39.

[19] MONTAZERI M, GHAINI F M.The liquation cracking behavior of IN738LC superalloy during low power Nd:YAG pulsed laser welding [J].Materials Characterization, 2012, 67(6): 65-73.

[20] RICHARDS N L, NAKKALIL R, CHATURVEDI M C.The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903[J].Metallurgical and Materials Transactions: A, 1994, 25(8): 1733-1745.

[21] OJO O A.Intergranular liquation cracking in heat affected zone of a welded nickel based superalloy in as cast condition[J].Materials Science and Technology, 2007, 23(10): 1149-1155.

[22] PEPE J J, SAVAGE W F.Effects of constitutional liquation in 18-Ni maraging steel weldments[J].Welding Journal, Research supplement, 1967, 46(9): 411-426.

[23] DUVALL D S, OWCZARSKI W A.Further heat-affected-zone studies in heat-resistant nickel alloys[J].Welding Journal, Research supplement, 1967, 40(11): 46-58.

[24] OJO O A, CHATURVEDI M C.On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy[J].Materials Science and Engineering: A, 2005, 403(1): 77-86.

[25] OJO O A, RICHARDS N L, CHATURVEDI M C.Liquid film migration of constitutionally liquated γ′ in weld heat affected zone (HAZ) of Inconel 738LC superalloy[J].Scripta Materialia, 2004, 51(2): 141-146.

[26] TANCRET F.Thermo-Calc and dictra simulation of constitutional liquation of gamma prime (γ′) during welding of Ni base superalloys [J].Computational Materials Science, 2007, 41(1): 13-19.

[27] ATTALLAH M M, TERASAKI H, MOAT R J, et al.In-Situ observation of primary γ′ melting in Ni-base superalloy using confocal laser scanning microscopy[J].Materials Characterization, 2011, 62(8): 760-767.

[28] OJO O A, DING R G, CHATURVEDI M C.Laser beam weld microstructures in directionally solidified alloy IC6 [J].Intermetallics, 2008, 16(2): 188-197.

[29] VISHWAKARMA K R, RICHARDS N L, CHATURVEDI M C.Microstructural analysis of fusion and heat affected zones in electron beam welded ALLVAC 718PLUS superalloy [J].Materials Science and Engineering: A, 2008, 480(1-2): 517-528.

[30] HUANG X, CHATURVEDI M C, RICHARDS N L.The effect of grain boundary segregation of boron in cast alloy IN718 on HAZ microfissuring[J].Acta Materialia, 1997, 8(45): 3095-3107.

[31] GHOSH S, CHOI J.Three-dimensional transient finite element analysis for residual stresses in the laser aided Direct metal/material deposition process[J].Journal of Laser Applications, 2005, 3(17): 144-158.

[32] JENDRZEJEWSKI R, SLIWINSKI G, KRAWCZUK M, et al.Temperature and stress fileds induced during laser cladding[J].Journal of Computers and Structures, 2004, 2(82): 653-658.

[33] PINKERTON A J, LI L.Multiple-layer cladding of stainless steel using a high-powered diode laser: an experimental investigation of the process characteristics and material properties[J].Journal of Thin Solid Films, 2004, 1(453): 471-476.

[34] YUSHCHENKO K A, SAVCHENKO V S.Classification and mechanisms of cracking in welding high-alloy steels and nickel alloys in brittle temperature ranges [J].Hot Cracking Phenomena in Welds II, 2008: 96-120.

[35] ALIMARDANI M, TOYSERKANI E, HUISSOON J P, et al.On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: An experimental-numerical investigation[J].Optics and Lasers in Engineering, 2009, 47(11): 1160-1168.

[36] DANIS Y, LACOSTE E, ARVIEU C.Numerical modeling of Inconel 738LC deposition welding: Prediction of residual stress induced cracking [J].Journal of Materials Processing Technology, 2010, 210(14): 2053-2061.

[37] LIU F, LIN X, HUANG C, et al.The effect of laser scanning path on microstructures and mechanical properties of laser solid formed nickel-base superalloy Inconel 718[J].Journal of Alloys and Compounds, 2011, 509(13): 4505-4509.

[38] ZHONG M L, YANG L, LIU W J, et al.Laser rapid manufacturing of special pattern Inco 718 nickel-based alloy component [J].Proc of SPIE, 2005(5629): 59-66.

[39] 杨林, 钟敏霖, 黄婷, 等.激光直接制造镍基高温合金零件成形工艺的研究[J]. 应用激光, 2004, 24(6): 345-349.

[40] ZHONG M L, SUN H Q, LIU W J, et al.Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni-based superalloy[J].Scripta Materialla, 2005, 53(2): 159-164.

[41] 陈智君, 张群莉, 楼程华, 等.Inconel 738 激光熔覆层的裂纹控制方法[J].应用激光, 2013, 26(1): 7-13.

[42] IDOWU O A, OJO O A, CHATURVEDI M C.Effect of heat input on heat affected zone cracking in laser welded ATI Allvac 718 plus superalloy[J].Materials Science and Engineering: A, 2007(454): 389-397.

[43] OSOBA L O, OJO O A.Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy[J].Materials Science and Technology, 2012, 28(4): 431-436.

[44] 黄永俊.激光-感应复合熔覆工艺及机理研究[D].武汉: 华中科技大学, 2009: 28-78.

[45] GOODWATER F, HUYNH L D, KANG D S, et al.Interactive laser welding at elevated temperatures of superalloy articles[J].Materials characterization, 2001, 51(12): 69-74.

[46] 李晓莉, 刘文今.高温合金K403的激光熔覆研究[J].应用激光, 2002, 22(3): 283-286.

[47] 刘其斌, 朱维东, 陈江.高温合金激光熔覆涂层中裂纹防止方法的研究[J].贵州工业大学学报(自然科学版), 2000, 29(5): 56-59.

[48] 王刚.K465镍基合金叶片电子束钎焊修复及裂纹控制研究[D].哈尔滨: 哈尔滨工业大学, 2009: 22-73.

[49] 赵晓明.Rene88DT高温合金激光立体成形的组织与性能研究[D].西安: 西北工业大学, 2009: 40-63.

[50] ZHANG J, SINGER R F.Hot tearing of nickel-based superalloys during directional solidification[J].Acta Materialia, 2002, 50(7): 1869-1879.

[51] 温鹏, 荻崎贤二, 山本元道.基于在线观察的激光焊接凝固开裂纹敏感性研究[J].中国激光, 2011, 38(6): 106-111.

[52] PHILLION A B, COCKCROFT S L, LEE P D.X-ray micro-tomographic observations of hot tear damage in an Al-Mg commercial alloy [J].Scripta Materialia. 2006, 55(5): 489-492.

[53] PHILLION A B, HAMILTON R W, FULORIA D, et al.In situ X-ray observation of semi-solid deformation and failure in Al-Cu alloys [J].Acta Materialia, 2011, 59(4): 1436-1444.

李秋歌, 林鑫, 王杏华, 刘丰刚, 刘奋成, 杨海欧, 黄卫东. 高Al+Ti镍基高温合金激光增材修复液化裂纹形成机理及控制研究进展[J]. 应用激光, 2016, 36(4): 471. Li Qiuge, Lin Xin, Wang Xinghua, Liu Fenggang, Liu Fencheng, Yang Haiou, Huang Weidong. Research Progress on Cracking Mechanism and Control of Laser Additive Repaired Nickel-based Superalloys with High Content of Al+Ti[J]. APPLIED LASER, 2016, 36(4): 471.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!