量子电子学报, 2010, 27 (2): 234, 网络出版: 2010-05-31  

用MFRSR仪器观测气溶胶光学厚度

Observing aerosol optical depth with MFRSR
作者单位
1 中国气象科学研究院, 北京 100081
2 国家气象中心, 北京 100081
3 国家卫星气象中心, 北京 100081
4 马里兰大学, 马里兰 美国 21228
摘要
气溶胶对激光大气传输有着重要的影响。多光谱旋转遮蔽影带辐射计(MFRSR) 是一种用于地基辐射和气溶胶测量的仪器。 该仪器使用自动旋转影带技术同时在七个波段交替进行总的水平辐射和漫射水平辐射测量,然后推算得出直接辐射。 其中6个波段的中心波长分别是414.3 nm, 495.3 nm, 613.7nm, 671.5 nm, 867.6 nm, 939.3 nm, 还有一个硅探测器进行 宽波段太阳总辐射测量。介绍了MFRSR 仪器及其定标和资料处理方法,利用香河观测站2004[EQUATION]2005年MFRSR 观测资料, 分析了气溶胶的统计特性。为了说明利用 MFRSR 观测气溶胶光学厚度的可靠性,将MFRSR与AERONET 的观测结果进行了比较, 结果表明二者在500 nm、670 nm和870 nm三个波段的平均偏差分别为[EQUATION]0.021, [EQUATION]0.009, [EQUATION]0.004;标准差分别为0.067, 0.051, 0.050。 文中还对造成二者偏差的原因进行了讨论。
Abstract
Multi-filter rotating shadow-band radiometer (MFRSR) is a ground-based instrument and it is used to measure irradiance and aerosol. It uses automated rotating shadow-band technique to alternatively measure total horizontal and diffuse horizontal irradiances at seven wavelengths simultaneously, and then deduce direct normal irradiance. In addition to broadband silicon detector for measurement of total solar irradiance, center wavelengths of the other six wave bands are 414.3 nm, 495.3 nm, 613.7 nm, 671.5 nm, 867.6 nm and 939.3 nm. The instrumentation, the method of calibration and data processing are introduced, and then statistical properties of aerosol are analyzed using observation of MFRSR during 2004[EQUATION]2005 in Xianghe, Hebei. In order to illuminate the reliability of observed aerosol optical depth with MFRSR, the results of MFRSR and AERONET data are compared. It shows the mean differences of the two results respectively are [EQUATION] at the wavelengths of 500 nm, 670 nm, 870 nm, and the standard deviations are 0.067, 0.051, 0.050. The reasons of deviation of the two method are also disscussed.
参考文献

[1] . Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements[J]. Appl. Opt., 1994, 33(22): 5118-5125.

[2] . Objective algorithms for the retrieval of optical depths from ground-based measurements[J]. Appl. Opt., 1994, 33(22): 5126-5132.

[3] . Comparison of aerosol optical depth from four solar radiometers during the fall 1997 ARM intensive observation period[J]. Geophysical Research Letters, 1999, 26(17): 2725-2728.

[4] Rangasayi H N, Schwartz S E, Michalsky J J, et al. Comparison of model estimated and measured direct-normal solar irradiance [J]. Journal of Geophyscial Research, 1997, 102(D25): 29991-30002

[5] . Automated method of MFRSR calibration for aerosol optical depth analysis with application to an Asian dust outbreak over the United States[J]. J. Appl. Meteor., 2003, 42: 266-278.

[6] Long C N, Ackerman T P. Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects [J]. J. Geophys. Res., 2003, 105(D12): 15609-15626

[7] . Aerosol ultraviolet absorption experiment (2002 to 2004), Part 1 : ultraviolet multifilter rotating shadowband radiometer calibration and intercomparison with CIMEL sunphotometers[J]. Opt. Eng., 2005, 44(4): 041004-1.

[8] . Remote sensing of atmospheric aerosol and trace gases by means of multifilter rotating shadowband radiometer. Part I: retrieval algorithm[J]. Journal of the Atmospheric Sciences, 2002, 59: 524-543.

[9] . Climatological aspect of aerosol optical properities in Northern Greece[J]. Atmospheric Chemistry and Physics, 2003, 3: 2025-2041.

[10] . Aerosol optical properities at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types[J]. Atmospheric Chemistry and Physics, 2006, 6: 697-713.

[11] . Light scattering in planetary atmospheres[J]. Science Reviews, 1974, 16: 527-610.

[12] . Comparison of sun photometer calibration by use of the Langley technique and the standard lamp[J]. Appl. Opt., 1995, 34(21): 4500-4512.

[13] Yin Hong. Atmospheric Radiation Theoretical Basis 6(大气辐射学基础) [M]. Beijing: Meteorology Press, 1993: 122-145 (in Chinese)

[14] . The parameters of atmospheric turbidity[J]. Tellus, 1964, 16(1): 64-75.

王莉萍, 赵凤生, 李占清. 用MFRSR仪器观测气溶胶光学厚度[J]. 量子电子学报, 2010, 27(2): 234. WANG Li-ping, ZHAO Feng-sheng, LI Zhan-qing. Observing aerosol optical depth with MFRSR[J]. Chinese Journal of Quantum Electronics, 2010, 27(2): 234.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!