发光学报, 2019, 40 (6): 758, 网络出版: 2019-09-03  

Dy3+掺杂YNbO4微晶粉末发光特性

作者单位
北京信息科技大学 仪器科学与光电工程学院, 北京 100192
摘要
采用高温固相法在1 300 ℃煅烧2小时制备了不同浓度Dy3+离子掺杂的YNbO4微晶粉末, 测量了样品的X射线衍射谱, 结果表明生成了纯相YNbO4微晶结构。采用漫反射积分球和光纤光谱仪测量了样品吸收谱, 并通过Judd-Ofelt理论计算了Dy3+掺杂YNbO4微晶粉末样品的光谱强度参数Ω2、Ω4、Ω6, 以及实验和理论振子强度。测量了监测波长为577 nm的样品激发谱, 结果表明在260 nm处有一个强激发峰, 其主要由YNbO4晶格吸收产生, 在其他波段还有几个较强激发峰, 主要归因于Dy3+离子的4f-4f跃迁。测量了270 nm和360 nm波长激发下的发射谱, 观察到了相似的发射峰分布。通过不同Dy3+掺杂浓度样品发射峰比较, 发现了浓度猝灭效应。根据能量传递理论分析表明, Dy3+离子的浓度猝灭属于电偶极-电偶极相互作用。最后, 计算了样品的CIE色坐标, 发现最接近于白光区域的色坐标为(0.219, 0.166)。
Abstract
Microcrystalline powders of YNbO4 with different Dy3+ doping concentration were synthesized by the conventional solid-state reaction at 1 300 ℃ and duration of 2 h. Their X-ray diffraction patterns were examined and the results confirmed the formation of single phase crystalline structure of YNbO4. Their absorption spectra were measured through combination of a scattering integral sphere and a fiber spectrometer, and in consequence, spectrum intensity parameters(Ω2, Ω4 and Ω6), experimental and theoretical oscillator intensities of YNbO4∶Dy3+ were calculated through Judd-Ofelt theory. Excitation spectra with emission peak at 577 nm were recorded and the results illustrated that there were an excitation peak near 260 nm due to absorption of crystalline lattice of YNbO4 and several excitation peaks originated from 4f-4f transition of Dy3+ ions. Emission spectra excited at 270 nm and 360 nm were also measured and basically identical emission spectra were observed. Concentration quenching phenomenon of Dy3+ ions luminescence was discovered by comparing emission spectrum of different Dy3+ doping concentration. Analytic results according to energy transfer theory indicated that concentration quenching mechanism in Dy3+ ions belonged to dipole-dipole interaction. At last, CIE color coordinates of the prepared samples were also calculated and color parameters with nearest distance to white light region were (0.219, 0.166).
参考文献

[1] HUIGNARD A, BUISSETTE V, FRANVILLE A C, et al.. Emission processes in YVO4∶Eu Nanoparticles [J]. J. Phys. Chem. B, 2003, 107(28):6754-6759.

[2] DI W H, WANG X J, CHEN B J, et al.. Preparation, characterization and VUV luminescence property of YPO4∶Tb phosphor for a PDP [J]. Opt. Mater., 2005, 27(8):1386-1390.

[3] MEYSSAMY H, RIWOTZKI K, KORNOWSKI A, et al.. Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO4∶Eu, LaPO4∶Ce, and LaPO4∶Ce,Tb [J]. Adv. Mater., 1999, 11(10):840-844.

[4] RIWOTZKI K, MEYSSAMY H, KORNOWSKI A, et al.. Liquid-phase synthesis of doped nanoparticles:colloids of luminescing LaPO4∶Eu and CePO4∶Tb particles with a narrow particle size distribution [J]. J. Phys. Chem. B, 2000, 104(13):2824-2828.

[5] YAN B, SU X Q. LuVO4∶RE3+(RE=Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors [J]. Opt. Mater., 2007, 29(5):547-551.

[6] ARELLANO I, NAZAROV M, BYEON C C, et al.. Luminescence and structural properties of Y(Ta,Nb)O4∶Eu3+,Tb3+ phosphors [J]. Mater. Chem. Phys., 2010, 119(1-2):48-51.

[7] YAMAGUCHIO, MATSUI K, KAWABE T, et al.. Crystallization and transformation of distorted tetragonal YNbO4 [J]. J. Am. Ceram. Soc., 1985, 68(10):C-275-C-276.

[8] JEHNG J M, WACHS I E. Structural chemistry and Raman spectra of niobium oxides [J]. Chem. Mater., 1991, 3(1):100-107.

[9] BUTH A H, BLASSE G. Luminescence and energy transfer in yttrium niobate (YNbO4) [J]. Phys. Status Solidi A, 1981, 64(2):669-676.

[10] HIRANO M, DOZONO H. Direct formation and luminescence properties of yttrium niobate YNbO4 nanocrystals via hydrothermal method [J]. J. Am. Ceram. Soc., 2013, 96(11):3389-3393.

[11] XIAO X Z, YAN B. Synthesis and luminescent properties of novel RENbO4∶Ln3+(RE=Y, Gd, Lu; Ln=Eu, Tb) micro-crystalline phosphors [J]. J. Non-Cryst. Solids, 2005, 351(46-48):3634-3639.

[12] DAANIN L R, LUKIC'-PETROVIC' S R, PETROVIC' D M, et al.. Temperature quenching of luminescence emission in Eu3+- and Sm3+-doped YNbO4 powders [J]. J. Lumin., 2014, 151:82-87.

[13] CHEN X B, SALAMO G J, LI S, et al.. Two-photon, three-photon, and four-photon excellent near-infrared quantum cutting luminescence of Tm3+ ion activator emerged in Tm3+∶YNbO4 powder phosphor one material simultaneously [J]. Phys. B: Condens. Matter, 2015, 479:159-164.

[14] YAN B, XIAO X Z. Novel YNbO4∶RE3+(RE=Sm, Dy, Er) microcrystalline phosphors:chemical co-precipitation synthesis from hybrid precursor and photoluminescent properties [J]. J. Alloys Compd., 2007, 433(1-2):251-255.

[15] ZHOU Y Y, MA Q, L M K et al.. Combustion synthesis and photoluminescence properties of YNbO4-based nanophosphors [J]. J. Phys. Chem. C, 2008, 112(50):19901-19907.

[16] HIRANO M, ISHIKAWA K. Intense up-conversion luminescence of Er3+/Yb3+ co-doped YNbO4 through hydrothermal route [J]. J. Photochem. Photobiol. A:Chem., 2016, 316:88-94.

[17] JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3):750-761.

[18] OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3):511-520.

[19] LOIKO P A, DYMSHITS O S, ALEKSEEVA I P, et al.. Transparent glass-ceramics with (Eu3+,Yb3+)∶YNbO4 nanocrystals:crystallization, structure, optical spectroscopy and cooperative upconversion [J]. J. Lumin., 2016, 179:64-73.

[20] 张思远. 稀土离子的光谱学——光谱性质和光谱型论 [M]. 北京: 科学出版社, 2008.

    ZHANG S Y. Spectroscopy of Rare Earth Ions:Spectral Properties and Spectral Theory [M]. Beijing:Science Press, 2008. (in Chinese)

[21] FLREZ A, JEREZ V A, FLREZ M. Optical transitions probabilities of Dy3+ ions in fluoroindate glass [J]. J. Alloys Compd., 2000, 303-304:355-359.

[22] COURROL L C, TARELHO L V G, GOMES L, et al.. Time dependence and energy-transfer mechanisms in Tm3+, Ho3+ and Tm3+-Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+ [J]. J. Non-Cryst. Solids, 2001, 284(1-3):217-222.

[23] CHOI Y G, CHO D H, KIM K H. Influence of 4f absorption transitions of Dy3+ on the emission spectra of Tm3+-doped tellurite glasses [J]. J. Non-Cryst. Solids, 2000, 276(1-3):1-7.

[24] 侯嫣嫣,杨红侠,林海,等. 稀土硼酸盐玻璃中三价镝离子的光谱分析 [J]. 中国稀土学报, 2005, 23(6):704-707.

    HOU Y Y, YANG H X, LIN H, et al.. Optics and spectral investigation in Dy3+-doped borate glasses [J]. J. Chin. Rare Earth Soc., 2005, 23(6):704-707. (in Chinese)

[25] HIRANO M, DOZONO H. Hydrothermal formation and characteristics of rare-earth niobate phosphors and solid solutions between YNbO4 and TbNbO4[J]. Mater. Chem. Phys., 2014, 143(2):860-866.

[26] DEXTER D L. A theory of sensitized luminescence in solids [J]. J. Chem. Phys., 1953, 21(5):836-850.

[27] PORRS L, HOLLAND A, PLSSON L O, et al.. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere [J]. J. Fluoresc., 2006,16(2):267-272.

牛春晖, 朱婷, 郎晓萍. Dy3+掺杂YNbO4微晶粉末发光特性[J]. 发光学报, 2019, 40(6): 758. NIU Chun-hui, ZHU Ting, LANG Xiao-ping. [J]. Chinese Journal of Luminescence, 2019, 40(6): 758.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!