人工晶体学报, 2020, 49 (10): 1857, 网络出版: 2021-01-09  

建筑环境下基于ZnO纳米线甲醛气体检测传感器的研究

Study on Formaldehyde Gas Detection Sensor Based on ZnO Nanowires in Building Environment
作者单位
西安外事学院工学院,西安 710077
摘要
为了检测建筑物室内甲醛,用ZnO纳米线作为监测甲醛的目标物。以氯化锌(ZnCl2)和柠檬酸钠(C6H5Na3O7)为原料,使用水热法合成ZnO纳米线,利用X射线衍射仪(XRD)、扫描电镜(SEM)和X射线能谱仪(EDS)对制备出的ZnO纳米线的晶体结构和微观形貌进行表征。结构表征结果表明,所制备出的ZnO纳米线结晶良好、纯度较高,平均直径为(39±10) nm,其长度约为400 nm,且分散良好。将所制备的ZnO纳米线涂覆在陶瓷管上,组装成气敏元件并对其进行系统的气敏特性研究。气敏检测结果表明,基于ZnO纳米线的气体传感器对HCHO气体具有优异的气敏性能。该传感器在125 ℃时对50×10-6的HCHO气体获得最大灵敏度15.2,同时展现出了优良的稳定性、重现性以及选择性。
Abstract
In order to detect the formaldehyde content in building interiors, ZnO nanowire was used as the target for monitoring formaldehyde. ZnO nanowires were synthesized by hydrothermal method using zinc chloride (ZnCl2) and sodium citrate (C6H5Na3O7) as raw materials. The crystal structure and micromorphology of the prepared ZnO nanowires were analyzed by XRD, SEM and EDS. Structural characterization results show that the prepared ZnO nanowires have good crystallinity and high purity, with an average diameter of (39±10) nm, a length of about 400 nm, and good dispersion. As-prepared ZnO nanowires were brushed-coated on a ceramic tube, assembling into a gas sensor, and investigated systematic gas-sensing properties of sensor. The gas sensing test results show that the ZnO nanowire-based gas sensor has excellent gas-sensitivity properties to HCHO gas, and obtain a maximum sensitivity of 15.2 to 50×10-6 HCHO gas at the optimal working temperature of 125 ℃. In addition, it has good stability, reproducibility and selectivity.
参考文献

[1] Zhu K, Ma S Y, Tie Y, et al. Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures[J]. Journal of Alloys and Compounds, 2019, 792: 938-944.

[2] 万欣娣,杨艳娟,白召军,等.TiO2/Cu-TiO2复合材料的制备及其对甲醛降解性能的研究[J].新型建筑材料,2019,46(10):91-95.

[3] 彭绍琴,江风益,李越湘.N掺杂TiO2光催化剂的制备及其可见光降解甲醛[J].功能材料,2005(8):1207-1209.

[4] 杨振洲,蔡同建.室内甲醛的危害及其预防[J].中国公共卫生,2003,19(6):765-768.

[5] Li N, Fan Y, Shi Y, et al. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets:synthesis, sensing performance and mechanism[J]. Sensors and Actuators B: Chemical, 2019, 294: 106-115.

[6] 崔景慧,李 强,夏金锋,等.半导体金属氧化物气体传感器灵敏性的研究进展[J].陶瓷学报,2013,34(3):387-393.

[7] 张良谊,温丽菁,周 峰,等.用于测定空气中甲醛的电子鼻[J].高等学校化学学报,2003,24(8):1381-1384.

[8] 张艳辉,田彦文,赵迎宪,等.半导体氧化锌的制备及其光催化性能研究[J].兵器材料科学与工程,2008(1):63-66.

[9] Kim H, Pak Y, Jeong Y, et al. Amorphous Pd-assisted H2 detection of ZnO nanorod gas sensor with enhanced sensitivity and stability[J]. Sensors and Actuators B: Chemical, 2018, 262: 460-468.

[10] 陈新亮,陈 莉,周忠信,等.Cu2O/ZnO 氧化物异质结太阳电池的研究进展[J].物理学报,2018,67(11):118401.

[11] 邹 平,洪长翔,奚红娟,等.氧化锌基乙醇气体传感器研制及特性研究[J].传感技术学报,2018,31(10):22-25.

[12] 顾乐华.Ag负载ZnO复合材料的制备及对亚甲基蓝的光催化降解[J].印染,2019,21:42-26.

[13] 宣天美,尹桂林,葛美英,等.纳米ZnO气敏传感器研究进展[J].材料导报,2015,1:132-136.

[14] 张覃轶,谢长生,李登峰,等.基于纳米ZnO 气体传感器阵列的乙醇,丙酮,苯,甲苯,二甲苯的识别研究[J].传感技术学报,2006,19(3):552-554.

[15] 徐甲强,王焕新,张建荣,等.微波水解法制备纳米 ZnO 及其气敏特性研究[J].无机材料学报,2004,19(6):1441-1445.

[16] Xu H Y, Liu X L, Cui D L, et al. A novel method for improving the performance of ZnO gas sensors[J]. Sensors and Actuators B: Chemical,2006,114:301-307.

[17] Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: a review[J]. Sensors and Actuators A: Physical, 2017, 267: 242-261.

[18] Sankar Ganesh R, Navaneethan M, Patil V L, et.al. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature[J]. Sensors and Actuators B: Chemical, 2018, 255: 672-683.

[19] 王文达,高翻琴,刘建霞.Co掺杂ZnO纳米结构的合成及其气敏特性[J].微纳电子技术,2016,53(3):188-194.

[20] Drobek M, Kim J H, Bechelany M, et al. MOF-based membrane encapsulated ZnO nanowires for enhanced Gas sensor selectivity[J]. ACS Applied Materials & Interfaces, 2016, 8: 8323-8328.

张阿梅. 建筑环境下基于ZnO纳米线甲醛气体检测传感器的研究[J]. 人工晶体学报, 2020, 49(10): 1857. ZHANG Amei. Study on Formaldehyde Gas Detection Sensor Based on ZnO Nanowires in Building Environment[J]. Journal of Synthetic Crystals, 2020, 49(10): 1857.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!