光谱学与光谱分析, 2016, 36 (1): 99, 网络出版: 2016-02-02   

不同粒径、 超均匀球形金纳米粒子合成及其表面增强拉曼散射效应研究

Synthesis of Ultra-Uniform Gold Spherical Nanoparticles with Different Sizes and Their SERS Effects Study
作者单位
1 江西理工大学应用科学学院矿冶工程系, 江西 赣州 341000
2 浙江中烟工业有限责任公司技术中心, 浙江 杭州 310024
3 厦门大学化学化工学院, 福建 厦门 361005
摘要
以氯金酸为原料, 抗坏血酸为还原剂, 柠檬酸钠为保护剂, 用化学还原(种子生长)法制备了不同粒径、 超均匀的球形金纳米粒子溶胶, 并通过紫外可见吸收光谱(UV-Vis)和扫描电子显微镜(SEM)进行表征。 结果表明, 随着金纳米粒子粒径的增大, 其UV-Vis光谱中的吸收峰发生红移并出现四极峰。 为进一步研究金纳米粒子表面增强拉曼散射(SERS)效应的作用机理并优化其灵敏度, 我们以罗丹明6G(R6G)为探针分子, 对不同粒径的金纳米粒子进行SERS表征, 发现R6G的SERS信号随着金纳米粒子的增大先增强后减弱。 当金纳米粒子的平均粒径达到120 nm时, 产生最强SERS信号增强, 增强因子约为1.1×107。 三维时域有限差分法(3D-FDTD)理论模拟纳米粒子阵列电磁场分布结果与实验数据的趋势一致。
Abstract
A series of ultra-uniform gold spherical nanoparticles with different sizes were synthesized using gold chloride acid as precursor, ascorbic acid as reductant and sodium citrate hydrate as surfactant. The prepared Au nanoparticles were characterized by scanning electron microscope (SEM) and UV-visible spectroscopy. The results showed that the absorption peak of UV-Vis spectroscopy red-shifted along with size increasing of the nanoparticles and finally appeared a quadrupole peak. To further explore the mechanism of surface enhanced Raman spectroscopy (SERS) effect and optimize the sensitivity, SERS on Au nanoparticles with different sizes were measured using Rhodamine 6G (R6G) as probe molecule. We found the SERS signals of R6G on the Au nanoaprtciles were highly size dependent. When the particles sizes are close to ~120 nm, it will generate the highest enhancement, the enhancement factor is about 1.1×107. The 3D-FDTD simulation results correlated with the experimental data very well.
参考文献

[1] Fleischmann M, Hendra P J, McQuillan A J. Chem. Phys. Lett., 1974, 26: 163.

[2] Jeanmaire D L, Van Duyne R P. J. Electroanal. Chem., 1977, 84: 1.

[3] Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99: 5215.

[4] Kneipp K, Wang Y, Kneipp H, et al. Phys. Rev. Lett., 1997, 78: 1667.

[5] Nie S M, Emery S R. Science, 1997, 275: 1102.

[6] Moskovits M. Rev. Mod. Phys., 1985, 57: 783.

[7] Anker J N, Hall W P, Lyandres O, et al. Nat. Mater., 2008, 7: 442.

[8] Tian Z Q, Ren B, Li J F, et al. Chem. Commun., 2007. 3514.

[9] Wu D Y, Li J F, Ren B, et al. Chem. Soc. Rev., 2008, 37: 1025.

[10] Lu L H, Wang H, Zhou Y, et al. Chem. Commun., 2002. 144.

[11] Santra S, Zhang P, Wang K, et al. Anal. Chem., 2001, 73: 4988.

[12] Brown K R, Lyon A, Fox A P, et al. Chem. Mater., 2000, 12: 314.

[13] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105: 4065.

[14] Rodriguez-Fernandez J, Perez-Juste J, Abajo F J, et al. Langmuir, 2006, 22: 7007.

[15] Fang P P, Li J F, Yang Z L, et al. J. Raman Spectrosc., 2008, 39: 1679.

[16] Link S, El-Sayed M A. J. Phys. Chem. B, 1999, 103: 4212.

[17] Tiwari V S, Oleg T, Darbha G K, et al. Chem. Phys. Lett., 2007, 446: 77.

[18] Yang K H, Liu Y C, Yu C C. J. Mater. Chem., 2008, 18: 4849.

[19] Lin X M, Cui Y, Xu Y H, et al. Anal. Bioanal. Chem., 2009, 394: 1729.

蒋思文, 李霞, 张月皎, 朱根松, 李剑锋. 不同粒径、 超均匀球形金纳米粒子合成及其表面增强拉曼散射效应研究[J]. 光谱学与光谱分析, 2016, 36(1): 99. JIANG Si-wen, LI Xia, ZHANG Yue-jiao, ZHU Gen-song, LI Jian-feng. Synthesis of Ultra-Uniform Gold Spherical Nanoparticles with Different Sizes and Their SERS Effects Study[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 99.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!