红外与毫米波学报, 2019, 38 (2): 02144, 网络出版: 2019-05-10  

D波段InP基高增益低噪声放大芯片的设计与实现

Design and realization of D-band InP MMIC amplifier with high-gain and low-noise
作者单位
北京理工大学 毫米波与太赫兹技术北京市重点实验室, 北京 100081
摘要
利用90 nm InAlAs/InGaAs/InP HEMT工艺设计实现了两款D波段(110~170 GHz)单片微波集成电路放大器.两款放大器均采用共源结构, 布线选取微带线.基于器件A设计的三级放大器A在片测试结果表明: 最大小信号增益为11.2 dB@140 GHz, 3 dB带宽为16 GHz, 芯片面积2.6 mm×1.2 mm.基于器件B设计的两级放大器B在片测试结果表明: 最大小信号增益为15.8 dB@139 GHz, 3 dB带宽12 GHz, 在130~150 GHz频带范围内增益大于10 dB, 芯片面积1.7 mm×0.8 mm, 带内最小噪声为4.4 dB、相关增益15 dB@141 GHz, 平均噪声系数约为5.2 dB.放大器B具有高的单级增益、相对高的增益面积比以及较好的噪声系数.该放大器芯片的设计实现对于构建D波段接收前端具有借鉴意义.
Abstract
In this paper, two D-band (110~170 GHz) monolithic millimeter-wave integrated circuit (MMIC) amplifiers have been designed and realized using 90-nm InAlAs/InGaAs/InP high gain electron mobility transistors (HEMT) technology. The amplifiers are developed in common source and microstrip technology. The three-stage MMIC amplifier A is designed based on device A and measured on wafer with a small-signal peak gain of 11.2 dB at 140 GHz and 3-dB-bandwidth is 16 GHz with a chip size of 2.6 mm×1.2 mm. The two-stage MMIC amplifier B is designed based on device B and measured on wafer with a small-signal peak gain of 15.8 dB at 139 GHz and 3-dB-bandwidth is 12 GHz and the gain is higher than 10 dB from 130 GHz to 150 GHz with a chip size of 1.7 mm×0.8 mm. The amplifier B also shows an excellent noise character with noise figure of 4.4 dB when the associa-ted gain of 15 dB is acquired at 141 GHz and the average noise figure is about 5.2 dB over the bandwidth. The amplifier B exhibits a higher gain-per-stage, competitive gain-area ratio and lower noise figure. The successful realization of MMIC amplifiers is of great potential for receiver-front-end applications at D-band.
参考文献

[1] Mei X, Yoshida W, Lange M, et al. First demonstration of amplification at 1 THz using 25 nm InP high electron mobility transistor process[J]. IEEE Electron Device Letters, 2015, 36(4):327-329.

[2] Kim D H, Kim D, Rieh J S. A $D$ -Band CMOS amplifier with a new dual-frequency interstage matching technique[J]. IEEE Transactions on Microwave Theory & Techniques, 2017, 65(5):1580-1588.

[3] Parveg D, Varonen M, Karaca D, et al. Design of a D-Band CMOS amplifier utilizing coupled slow-wave coplanar waveguides[J]. IEEE Transactions on Microwave Theory & Techniques, 2017, 99:1-15.

[4] Leong K M K H, Mei X, Yoshida W H, et al. 850 GHz receiver and transmitter front-ends using InP HEMT[J]. IEEE Transactions on Terahertz Science & Technology, 2017, 99:1-10.

[5] Cleriti R. D-band LNA using a 40 nm GaAs mHEMT technology[C].12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, 2017: 105-108.

[6] Varonen M, Larkoski P, Fung A, et al. 160-270-GHz InP HEMT MMIC low-noise amplifiers[J]. IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), 2012:1-4.

[7] Karkkainen M, Kantanen M, Caujolle-Bert S, et al. MHEMT G-band low-noise amplifiers[C]. Microwave Symposium Digest. IEEE, 2014:1-4.

[8] Chiong C C, Chen H M, Kao J C, et al. 180–220 GHz MMIC amplifier using 70-nm GaAs MHEMT technology[C]. IEEE International Symposium on Radio-Frequency Integration Technology. IEEE, 2016:1-4.

[9] Weissbrodt E, Kallfass I, Weber R, et al. Low-noise amplifiers in D-band using 100 nm and 50 nm mHEMT technology[C]. German Microwave Conference. IEEE, 2010:55-58.

[10] Wang Y, Wu H, Li J, et al. The D-band MMIC LNA circuit using 70nm InP HEMT technology[C]. IEEE, International Conference on Asic. IEEE, 2017:887-890.

[11] Merkle T, Leuther A, Koch S, et al. Backside process free broadband amplifier MMICs at D-Band and H-Band in 20 nm mHEMT technology[C]. Compound Semiconductor Integrated Circuit Symposium. IEEE, 2014:1-4.

[12] Tessmann A, Leuther A, Hurm V, et al. Metamorphic HEMT MMICs and modules operating between 300 and 500 GHz[J]. IEEE Journal of Solid-State Circuits, 2011, 46(10):2193-2202.

[13] Leong K, Mei G, Radisic V, et al. THz integrated circuits using InP HEMT transistors[C]. International Conference on Indium Phosphide and Related Materials. IEEE, 2013:1-4.

[14] Deal W, Mei X B, Leong K M K H, et al. THz monolithic integrated circuits using InP high electron mobility transistors[J]. IEEE Transactions on Terahertz Science & Technology, 2011, 1(1):25-32.

[15] Yishay R B, Shumaker E, Elad D. A 122-150 GHz LNA with 30 dB gain and 6.2 dB noise figure in SiGe BiCMOS technology[C]. Silicon Monolithic Integrated Circuits in Rf Systems. IEEE, 2015:15-17.

[16] WANG Zhi-Ming,HUANG Hui,HU Zhi-Fu, et al. Design and Realization of THz InAlAs/InGaAs InP-based PHEMTs[J].J.Infrared Millim.Waves(王志明,黄辉,胡志富,等. 太赫兹InP基InAlAs/InGaAs PHEMTs的研制, 红外与毫米波学报),2018, 37(2):135-139.

[17] Katayama K, Takano K, Amakawa S, et al. 14.4-dB CMOS D-band low-noise amplifier with 22.6 mW power consumption utilizing bias-optimization technique[C]. IEEE International Symposium on Radio-Frequency Integration Technology. IEEE, 2016:1-3.

[18] Weber R, Massler H, Leuther A. D-band low-noise amplifier MMIC with 50 % bandwidth and 3.0 dB noise figure in 100 nm and 50 nm mHEMT technology[C]. Microwave Symposium. IEEE, 2017:756-759.

刘军, 吕昕, 于伟华, 杨宋源, 侯彦飞. D波段InP基高增益低噪声放大芯片的设计与实现[J]. 红外与毫米波学报, 2019, 38(2): 02144. LIU Jun, LUY Xin, YU Wei-Hua, YANG Song-Yuan, HOU Yan-Fei. Design and realization of D-band InP MMIC amplifier with high-gain and low-noise[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02144.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!