光学学报, 2016, 36 (10): 1011001, 网络出版: 2016-10-12   

基于3PEMs和AOTF的光谱偏振成像系统及光谱修正

Optical System Design and Spectral Correction Based on 3PEMs and AOTF Spectropolarimetric Imaging
张瑞 1,2,3,*陈友华 1,2,3李克武 1,2,3王志斌 1,2,3李世伟 1,2,3王耀利 1,2,3张敏娟 1,2,3
作者单位
1 中北大学山西省光电信息与仪器工程技术研究中心, 山西 太原 030051
2 中北大学仪器科学与动态测试教育部重点实验室, 山西 太原 030051
3 中北大学电子测试技术重点实验室, 山西 太原 030051
摘要
基于弹光调制器和声光可调谐滤波器(AOTF)的新型光谱偏振成像系统部件多, AOTF入射角小,同一幅图中光谱分布不均。为此提出了一种前置光学系统由凸透镜、凹透镜和凸透镜构成的光学系统,压缩被测目标视场角,使其满足AOTF视场角要求,并将目标平行入射光变为平行光入射进AOTF,以便光谱修正。不同位置的目标以不同入射角依次进入光学系统和AOTF,在CCD上的成像位置也不同。AOTF的衍射光中心波长与入射角有关,可通过拟合测得衍射波长与入射角的关系,进而得到CCD像元与中心波长的关系,并对光谱修正方法进行了详细分析。实验结果表明,修正后的光谱测量误差比普通的AOTF光谱成像平均降低一个数量级,且成像清晰,提高了光谱偏振成像系统的光谱测量精度。
Abstract
The spectropolarimetric imaging system based on three photoelastic modulators and one acousto-optic tunable filter (AOTF), has many components, limited field angle of AOTF and uneven spectral distribution in one image. To overcome the disadvantages, an optical imaging system is reported, in which the front optical system is composed of convex lens, concave lens and convex lens. The field angle of measured target is compressed so as to satisfy the requirement of the AOTF field angle. The parallel incident light of the target is changed to parallel light incident into AOTF for subsequent spectral correction. Target light at different positions enters the optical system and AOTF with different incidence angles, and the imaging positions on CCD are also different. Since the central wavelength of the AOTF diffracted light is related to the incidence angle, the relationship between them can be determined by fitting, which further identifies the relationship between the central wavelength and the CCD pixel. The spectral correction method is analyzed in detail. The experimental results show that the error of corrected spectral value is reduced by an order of magnitude compared with that of the common AOTF spectral imaging system. The spectral imaging results are clear and the accuracy of the spectropolarimetric imaging measurement system is improved.
参考文献

[1] Dine D J, Davis A, Hancock B, et al. Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing[J]. Applied Optics, 2007, 46(35): 8428-8445.

[2] 杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报, 2005, 25(2): 241-245.

    Yang Zhiwen, Gao Shenggang, Wang Peigang. Polarization of reflected light by earth objects[J]. Acta Optica Sinica, 2005, 25(2): 241-245.

[3] 崔文煜, 张运杰, 易维宁, 等. 多角度偏振辐射计系统设计与实现[J]. 光学学报, 2012, 32(8): 0828003.

    Cui Wenyu, Zhang Yunjie, Yi Weining, et al. System design and implementation of multi-angle polarimeter[J]. Acta Optica Sinica, 2012, 32(8): 0828003.

[4] Zhang R, Wen T D, Wang Z B, et al. Spectropolarimetric detection using photoelastic modulators and acousto-optic tunable filter[J]. Applied Optics, 2015, 54(29): 8686-8693.

[5] 陈友华, 王召巴, 王志斌, 等. 弹光调制型成像光谱偏振仪中的高精度偏振信息探测研究[J]. 物理学报, 2013, 62(6): 060702.

    Chen Youhua, Wang Zhaoba, Wang Zhibin, et al. The research of polarized information detection for photo-elastic modulator-based imaging spectropolarimeter[J]. Acta Physica Sinica, 2013, 62(6): 060702.

[6] 张敏娟, 王艳超, 王召巴, 等. 不同谐振状态下弹光调制器的品质因数分析[J]. 中国激光, 2015, 42(4): 0415002.

    Zhang Minjuan, Wang Yanchao, Wang Zhaoba, et al. Quality factor analysis of photoelastic modulation with different resonant state[J]. Chinese J Lasers, 2015, 42(4): 0415002.

[7] 张敏娟, 王召巴, 王志斌, 等. PEM-FTS非线性干涉信号的快速光谱反演算法[J]. 中国激光. 2013, 40(5): 0515001.

    Zhang Minjuan, Wang Zhaoba, Wang Zhibin, et al. Fast spectral rebuild garithmetic of PEM-FTS nonlinear phase interferogram data[J]. Chinese J Lasers, 2013, 40(5): 0515001.

[8] 王志斌, 张瑞, 王耀利, 等. 基于微梯形弹光晶体的大光程差PEM研究[J]. 光谱学与光谱分析, 2015, 34(7): 569-573.

    Wang Zhibin, Zhang Rui, Wang Yaoli, et al. The study of large OPD’s PEM based on micro trapezoidal photo-elastic crystals[J]. Spectroscopy and Spectral Analysis, 2015, 34(7): 569-573.

[9] 王志斌, 张瑞, 王耀利, 等. 双弹光拍频调制型Fourier-Bessel变换成像光谱技术研究[J]. 光谱学与光谱分析, 2014, 34(2): 569-573.

    Wang Zhibin, Zhang Rui, Wang Yaoli, et al. Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer[J]. Spectroscopy and Spectral Analysis, 2014, 34(2): 569-573.

[10] Guan W, Cook P J, Jones G A, et al. Experimental determination of the Stokes parameters using a dual photoelastic modulator system[J]. Applied Optics, 2010, 49(14): 2644-2652.

[11] 姜庆辉, 邱跃洪, 文延. AOTF偏振光谱成像数据采集系统设计[J]. 红外与激光工程, 2012, 41(1): 218-222.

    Jiang Qinghui, Qiu Yuehong, Wen Yan. Design of data acquisition system for AOTF polarization spectral imaging instrument[J]. Infrared and Laser Engineering, 2012, 41(1): 218-222.

[12] Grulkowski I, Szulzycki K, Wojtkowski M. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination[J]. Optics Express, 2014, 22(26): 31746-31760.

[13] Agrawal P, Nandi A, Sudhakar M, et al. Characterization of an acousto-optic tunable filter for development of a near-IR spectrometer for planetary science[J]. Experimental Astronomy, 2015, 39(4): 445-460.

[14] Gupta N, Voloshinov V B. Development and characterization of two-transducer imaging acousto-optic tunable filters with extended tuning range[J]. Applied Optics, 2007, 46(7): 1081-1088.

[15] 竺庆春, 陈时胜. 矩阵光学导论[M]. 上海: 上海科学技术文献出版社, 1991.

    Zhu Qingchun, Chen Shisheng. Matrix optics introduction[M]. Shanghai: Shanghai Science and Technology Literature Press, 1991.

张瑞, 陈友华, 李克武, 王志斌, 李世伟, 王耀利, 张敏娟. 基于3PEMs和AOTF的光谱偏振成像系统及光谱修正[J]. 光学学报, 2016, 36(10): 1011001. Zhang Rui, Chen Youhua, Li Kewu, Wang Zhibin, Li Shiwei, Wang Yaoli, Zhang Minjuan. Optical System Design and Spectral Correction Based on 3PEMs and AOTF Spectropolarimetric Imaging[J]. Acta Optica Sinica, 2016, 36(10): 1011001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!