半导体光电, 2018, 39 (4): 462, 网络出版: 2018-08-29  

基于电光调制器的微波信号倍频技术研究进展

Research Progress of Frequency Multiplication Microwave Signal Generation Based on Electro-Optic Modulator
作者单位
1 中国人民解放军陆军工程大学 通信工程学院, 南京 210007
2 中国人民解放军陆军工程大学 野战工程学院, 南京 210007
3 西安邮电大学 通信与信息工程学院, 西安 710000
引用该论文

李诚鑫, 张宝富, 滕义超, 葛海波. 基于电光调制器的微波信号倍频技术研究进展[J]. 半导体光电, 2018, 39(4): 462.

LI Chengxin, ZHANG Baofu, TENG Yichao, GE Haibo. Research Progress of Frequency Multiplication Microwave Signal Generation Based on Electro-Optic Modulator[J]. Semiconductor Optoelectronics, 2018, 39(4): 462.

参考文献

[1] Ngoma A. Radio-over-fibre technology for broadband wireless communication systems[D]. The Netherlands: Technische Universiteit Eindhoven, 2005.

[2] Bordonalli A C, Seeds A J, Walton C. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop[J]. J. of Lightwave Technol., 1999, 17(2): 328-342.

[3] Steed R J, Ponnampalam L, Fice M J, et al. Hybrid integrated optical phase-lock loops for photonic terahertz sources[J]. IEEE J. of Sel. Topics in Quantum Electron., 2011, 17(1): 210-217.

[4] Lamponi M, Chtioui M, Lelarge F, et al. Tunable InP photonic integrated circuit for millimeter wave generation[C]// Inter. Conf. on Indium Phosphide & Related Materials, 2013: 1-2.

[5] Griebel M, Quraishi Q, Bratschitsch R H, et al. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime[J]. Opt. Lett., 2005, 30 (23): 3231.

[6] Renaud C C, Balakier K, Fice M J, et al. Photonic integration for millimetre-wave and THz systems[C]// Inter. Topical Meeting on Microwave Photon., 2014: 36-39.

[7] Zhuang J P, Li S S, Li X Z, et al. Photonic microwave generation utilizing dynamics of laser diodes[C]// IEEE Inter. Conf. on Adv. Infocomm. Technol., 2014: 66-69.

[8] Wen Y J, Liu H F, Novak D, et al. Millimeter-wave signal generation from a monolithic semiconductor laser via subharmonic optical injection[J]. IEEE Photon. Technol. Lett., 2000, 12(8): 1058-1060.

[9] Chen Hanbing, Yu Jinlong, Wang Wenrui, et al. Experimental study of continuously tunable photonic microwave frequency multiplication based on distributed feedback injection locking[J]. Chinese J. of Lasers, 2012, 39(12): 114-119.

[10] Johansson L A, Seeds A J. Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase lock loop[J]. IEEE Photon. Technol. Lett., 2000, 12(6): 690-692.

[11] Xiong Jintian, Wang Rong, Pu Tao, et al. Amplification properties of a distribution feedback semiconductor laser under optical injection and its application in generating microwave signal[J]. Acta Opt. Sinica, 2013, 33(6): 170-174.

[12] Lu M, Park H, Bloch E, et al. A highly-integrated optical frequency synthesizer based on phase-locked loops[C]// Opt. Fiber Commun. Conf. & Exhibition, 2014: 1-3.

[13] Fukushima S, Silva CFC, Muramoto Y. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode[J]. J. of Lightwave Technol., 2003, 21(12): 3043-3051.

[14] Van Dijk F, Charbonnier B, Constant S, et al. Quantum dash mode-locked lasers for millimeter wave signal generation and transmission[C]// Meeting of the. IEEE Xplore IEEE Photon. Society: 187-188.

[15] Renaud C C, Duser M, Silva C F C, et al. Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 903-905.

[16] Balakier K, Fice M J, Ponnampalam L, et al. Monolithically integrated optical phase lock loop for microwave photonics[J]. Lightwave Technol. J., 2014, 32(20): 3893-3900.

[17] Pan S, Tang Z, Zhu D, et al. Injection-locked fiber laser for tunable millimeter-wave generation[J]. Opt. Lett., 2011, 36(24): 4722-4724.

[18] OReilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimetre wave signals[J]. Electron. Lett., 1992, 28(25): 2309-2311.

[19] Qi Guohua, Yao Jianping, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique[J]. IEEE Trans. on Microwave Theory & Techniques, 2005, 53(10): 3090-3097.

[20] Mohamed M, Zhang X, Hraimel B, et al. Frequency sixupler for millimeter-wave over fiber systems[J]. Opt. Express, 2008, 16(14): 10141.

[21] Zhang Jian, Cheng Hongwei, Chen Minghua, et al. A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression[J]. IEEE Photon. Technol. Lett., 2007, 19(14): 1057-1059.

[22] Li Wangzhe, Yao Jianping. Investigation of photonically assisted microwave frequency multiplication based on external modulation[J]. IEEE Trans. on Microwave Theory & Techni., 2010, 58(11): 3259-3268.

[23] Chen Yang, Wen Aijun, Shang Lei. Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators[J]. Opt. Commun., 2010, 283(24): 4933-4941.

[24] Lin C T, Shih P T, Chen J, et al. Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering[J]. IEEE Photon. Technol. Lett., 2008, 20(12): 1027-1029.

[25] Shi Peiming, Yu Song, Li Zekun, et al. A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter[J]. Opt. Fiber Technol., 2011, 17(3): 236-241.

[26] Zhang Y, Pan S. Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator[C]// Microwave Workshop Series on Millimeter Wave Wireless Technol. and Appl. IEEE, 2012: 1-4.

[27] Geng Hongjian, Hao shiqi, Liu Jialin. Photonic generation of microwave signals with high multiplied frequency based on dual-parallel MZM and four-wave mixing[J]. J. of Optoelectron. ·Laser, 2014(10): 1926-1930.

[28] Zhu Z, Zhao S, Zheng W, et al. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators[J]. Appl. Opt., 2015, 54(32): 9432-9440.

[29] Wen A. Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop[J]. J. of Modern Opt., 2015, 62(16): 1291-1296.

[30] Qi Guohua, Yao Jianping, Senior Member, et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J. of Lightwave Technol., 2005, 23(9): 2687-2695.

[31] Yu Jianjun, Jia Zhensheng, Xu Lei, et al. DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver[J]. IEEE Photon. Technol. Lett., 2006, 18(13): 1418-1420.

[32] Chen Bin, Zheng Shilie, Chi Hao, et al. An optical millimeter-wave generation technique based on phase modulation and Brillouin-assisted notch-filtering[J]. IEEE Photon. Technol. Lett., 2008, 20(24): 2057-2059.

[33] Guemri Rabiaa, Lucarz Frederic, Bourreau Daniel, et al. Filterless millimetre-wave optical generation using optical phase modulators without DC bias[J]. Phd Research in Microelectron. & Electron., 2015: 1-4.

[34] Pan Shilong, Wang Chao, Yao Jianping. Generation of a stable and frequency-tunable microwave signal using a polarization modulator and a wavelength-fixed notch filter[C]// Conf. on Opt. Fiber Commun.-incudes Post Deadline Paper, 2009: 1-3.

[35] Pan Shilong, Member, Yao Jianping. Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter[J]. IEEE Trans. on Microwave Theory & Technol., 2010, 58(7): 1967-1975.

[36] Li Wangzhe, Yao Jianping. Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability[J]. IEEE Photon. J., 2010, 2(6): 954-959.

[37] Zhu Z, Zhao S, Li X, et al. Photonic generation of frequency-octupled and frequency-quadrupled microwave signals using a dual-parallel polarization modulator[J]. Opt. & Quantum Electron., 2016, 48(8): 398.

[38] Liu Weilin, Wang Muguang, Yao Jianping. Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator[J]. J. of Lightwave Technol., 2013, 31(10): 1636-1644.

[39] Zhu Z, Zhao S, Tan Q, et al. Photonically assisted microwave signal generation based on two cascaded polarization modulators with a tunable multiplication factor[J]. IEEE Trans. on Microwave Theory & Techniques, 2016, 64(11): 3748-3756.

李诚鑫, 张宝富, 滕义超, 葛海波. 基于电光调制器的微波信号倍频技术研究进展[J]. 半导体光电, 2018, 39(4): 462. LI Chengxin, ZHANG Baofu, TENG Yichao, GE Haibo. Research Progress of Frequency Multiplication Microwave Signal Generation Based on Electro-Optic Modulator[J]. Semiconductor Optoelectronics, 2018, 39(4): 462.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!