半导体光电, 2018, 39 (4): 462, 网络出版: 2018-08-29  

基于电光调制器的微波信号倍频技术研究进展

Research Progress of Frequency Multiplication Microwave Signal Generation Based on Electro-Optic Modulator
作者单位
1 中国人民解放军陆军工程大学 通信工程学院, 南京 210007
2 中国人民解放军陆军工程大学 野战工程学院, 南京 210007
3 西安邮电大学 通信与信息工程学院, 西安 710000
摘要
基于电光调制器产生微波信号的倍频方法结构简单、调谐性好、稳定性较高, 为产生毫米波频段乃至太赫兹频段信号提供了一种有效的解决方法。重点介绍了基于电光调制器的几种典型倍频方案与关键技术及其最新研究进展, 综合比较了各个方案的优缺点, 并给出了下一步研究与发展的方向。
Abstract
Using electro-optic modulator to generate frequency multiplication microwave signals owns the characteristics of simple structure, high stability and broad tunable range, providing an effective solution to generate millimeter wave and terahertz signal. Several generation methods of frequency multiplication microwave signal and latest progresses are introduced, the advantages and disadvantages are analyzed and compared, the further research and development trends are discussed.
参考文献

[1] Ngoma A. Radio-over-fibre technology for broadband wireless communication systems[D]. The Netherlands: Technische Universiteit Eindhoven, 2005.

[2] Bordonalli A C, Seeds A J, Walton C. High-performance phase locking of wide linewidth semiconductor lasers by combined use of optical injection locking and optical phase-lock loop[J]. J. of Lightwave Technol., 1999, 17(2): 328-342.

[3] Steed R J, Ponnampalam L, Fice M J, et al. Hybrid integrated optical phase-lock loops for photonic terahertz sources[J]. IEEE J. of Sel. Topics in Quantum Electron., 2011, 17(1): 210-217.

[4] Lamponi M, Chtioui M, Lelarge F, et al. Tunable InP photonic integrated circuit for millimeter wave generation[C]// Inter. Conf. on Indium Phosphide & Related Materials, 2013: 1-2.

[5] Griebel M, Quraishi Q, Bratschitsch R H, et al. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime[J]. Opt. Lett., 2005, 30 (23): 3231.

[6] Renaud C C, Balakier K, Fice M J, et al. Photonic integration for millimetre-wave and THz systems[C]// Inter. Topical Meeting on Microwave Photon., 2014: 36-39.

[7] Zhuang J P, Li S S, Li X Z, et al. Photonic microwave generation utilizing dynamics of laser diodes[C]// IEEE Inter. Conf. on Adv. Infocomm. Technol., 2014: 66-69.

[8] Wen Y J, Liu H F, Novak D, et al. Millimeter-wave signal generation from a monolithic semiconductor laser via subharmonic optical injection[J]. IEEE Photon. Technol. Lett., 2000, 12(8): 1058-1060.

[9] Chen Hanbing, Yu Jinlong, Wang Wenrui, et al. Experimental study of continuously tunable photonic microwave frequency multiplication based on distributed feedback injection locking[J]. Chinese J. of Lasers, 2012, 39(12): 114-119.

[10] Johansson L A, Seeds A J. Millimeter-wave modulated optical signal generation with high spectral purity and wide-locking bandwidth using a fiber-integrated optical injection phase lock loop[J]. IEEE Photon. Technol. Lett., 2000, 12(6): 690-692.

[11] Xiong Jintian, Wang Rong, Pu Tao, et al. Amplification properties of a distribution feedback semiconductor laser under optical injection and its application in generating microwave signal[J]. Acta Opt. Sinica, 2013, 33(6): 170-174.

[12] Lu M, Park H, Bloch E, et al. A highly-integrated optical frequency synthesizer based on phase-locked loops[C]// Opt. Fiber Commun. Conf. & Exhibition, 2014: 1-3.

[13] Fukushima S, Silva CFC, Muramoto Y. Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasers, and a unitraveling-carrier photodiode[J]. J. of Lightwave Technol., 2003, 21(12): 3043-3051.

[14] Van Dijk F, Charbonnier B, Constant S, et al. Quantum dash mode-locked lasers for millimeter wave signal generation and transmission[C]// Meeting of the. IEEE Xplore IEEE Photon. Society: 187-188.

[15] Renaud C C, Duser M, Silva C F C, et al. Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)[J]. IEEE Photon. Technol. Lett., 2004, 16(3): 903-905.

[16] Balakier K, Fice M J, Ponnampalam L, et al. Monolithically integrated optical phase lock loop for microwave photonics[J]. Lightwave Technol. J., 2014, 32(20): 3893-3900.

[17] Pan S, Tang Z, Zhu D, et al. Injection-locked fiber laser for tunable millimeter-wave generation[J]. Opt. Lett., 2011, 36(24): 4722-4724.

[18] OReilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimetre wave signals[J]. Electron. Lett., 1992, 28(25): 2309-2311.

[19] Qi Guohua, Yao Jianping, Seregelyi J, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique[J]. IEEE Trans. on Microwave Theory & Techniques, 2005, 53(10): 3090-3097.

[20] Mohamed M, Zhang X, Hraimel B, et al. Frequency sixupler for millimeter-wave over fiber systems[J]. Opt. Express, 2008, 16(14): 10141.

[21] Zhang Jian, Cheng Hongwei, Chen Minghua, et al. A photonic microwave frequency quadrupler using two cascaded intensity modulators with repetitious optical carrier suppression[J]. IEEE Photon. Technol. Lett., 2007, 19(14): 1057-1059.

[22] Li Wangzhe, Yao Jianping. Investigation of photonically assisted microwave frequency multiplication based on external modulation[J]. IEEE Trans. on Microwave Theory & Techni., 2010, 58(11): 3259-3268.

[23] Chen Yang, Wen Aijun, Shang Lei. Analysis of an optical mm-wave generation scheme with frequency octupling using two cascaded Mach-Zehnder modulators[J]. Opt. Commun., 2010, 283(24): 4933-4941.

[24] Lin C T, Shih P T, Chen J, et al. Optical millimeter-wave signal generation using frequency quadrupling technique and no optical filtering[J]. IEEE Photon. Technol. Lett., 2008, 20(12): 1027-1029.

[25] Shi Peiming, Yu Song, Li Zekun, et al. A frequency sextupling scheme for high-quality optical millimeter-wave signal generation without optical filter[J]. Opt. Fiber Technol., 2011, 17(3): 236-241.

[26] Zhang Y, Pan S. Experimental demonstration of frequency-octupled millimeter-wave signal generation based on a dual-parallel Mach-Zehnder modulator[C]// Microwave Workshop Series on Millimeter Wave Wireless Technol. and Appl. IEEE, 2012: 1-4.

[27] Geng Hongjian, Hao shiqi, Liu Jialin. Photonic generation of microwave signals with high multiplied frequency based on dual-parallel MZM and four-wave mixing[J]. J. of Optoelectron. ·Laser, 2014(10): 1926-1930.

[28] Zhu Z, Zhao S, Zheng W, et al. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators[J]. Appl. Opt., 2015, 54(32): 9432-9440.

[29] Wen A. Microwave generation with photonic frequency octupling using a DPMZM in a Sagnac loop[J]. J. of Modern Opt., 2015, 62(16): 1291-1296.

[30] Qi Guohua, Yao Jianping, Senior Member, et al. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator[J]. J. of Lightwave Technol., 2005, 23(9): 2687-2695.

[31] Yu Jianjun, Jia Zhensheng, Xu Lei, et al. DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver[J]. IEEE Photon. Technol. Lett., 2006, 18(13): 1418-1420.

[32] Chen Bin, Zheng Shilie, Chi Hao, et al. An optical millimeter-wave generation technique based on phase modulation and Brillouin-assisted notch-filtering[J]. IEEE Photon. Technol. Lett., 2008, 20(24): 2057-2059.

[33] Guemri Rabiaa, Lucarz Frederic, Bourreau Daniel, et al. Filterless millimetre-wave optical generation using optical phase modulators without DC bias[J]. Phd Research in Microelectron. & Electron., 2015: 1-4.

[34] Pan Shilong, Wang Chao, Yao Jianping. Generation of a stable and frequency-tunable microwave signal using a polarization modulator and a wavelength-fixed notch filter[C]// Conf. on Opt. Fiber Commun.-incudes Post Deadline Paper, 2009: 1-3.

[35] Pan Shilong, Member, Yao Jianping. Tunable subterahertz wave generation based on photonic frequency sextupling using a polarization modulator and a wavelength-fixed notch filter[J]. IEEE Trans. on Microwave Theory & Technol., 2010, 58(7): 1967-1975.

[36] Li Wangzhe, Yao Jianping. Microwave and terahertz generation based on photonically assisted microwave frequency twelvetupling with large tunability[J]. IEEE Photon. J., 2010, 2(6): 954-959.

[37] Zhu Z, Zhao S, Li X, et al. Photonic generation of frequency-octupled and frequency-quadrupled microwave signals using a dual-parallel polarization modulator[J]. Opt. & Quantum Electron., 2016, 48(8): 398.

[38] Liu Weilin, Wang Muguang, Yao Jianping. Tunable microwave and sub-terahertz generation based on frequency quadrupling using a single polarization modulator[J]. J. of Lightwave Technol., 2013, 31(10): 1636-1644.

[39] Zhu Z, Zhao S, Tan Q, et al. Photonically assisted microwave signal generation based on two cascaded polarization modulators with a tunable multiplication factor[J]. IEEE Trans. on Microwave Theory & Techniques, 2016, 64(11): 3748-3756.

李诚鑫, 张宝富, 滕义超, 葛海波. 基于电光调制器的微波信号倍频技术研究进展[J]. 半导体光电, 2018, 39(4): 462. LI Chengxin, ZHANG Baofu, TENG Yichao, GE Haibo. Research Progress of Frequency Multiplication Microwave Signal Generation Based on Electro-Optic Modulator[J]. Semiconductor Optoelectronics, 2018, 39(4): 462.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!