强激光与粒子束, 2015, 27 (12): 120201, 网络出版: 2015-12-18   

多导体传输线高频场线耦合模型的研究综述

Review of high-frequency field-to-line coupling models with multi-conductor transmission line
作者单位
四川大学 电子信息学院, 成都 610064
摘要
场线耦合模型的研究是电磁兼容分析和电磁效应评估的重要组成部分。低频时,可以使用基于准TEM波近似的经典场线耦合模型来计算外场激励下的传输线沿线电流电压响应,然而,当入射波频率增加到对应波长与传输线横向尺寸可比拟时,经典模型将产生不可接受的模型误差,因而需要发展高频情况下的场线耦合模型。介绍了国内外多导体传输线高频场线耦合模型的研究进展,详细分析和比较了两个主流分支:TRI模型和TLST模型;之后简要介绍了传输线超理论TLST模型并以算例说明了该模型的准确性和有效性;最后对高频场线耦合模型的研究内容和研究目标进行了总结和展望。
Abstract
Field-to-line coupling model research is an important part of electromagnetic compatibility analysis and electromagnetic effects assessment. At low frequency, the classical field-to-line model based on quasi-TEM wave approximation can be used to calculate the current and voltage response excited by the external field. However, if the incident frequency becomes high enough that the corresponding wavelength is comparable to the transverse size of the transmission line, the classical model will produce unacceptable model error. Therefore it is necessary to develop high-frequency field-to-line coupling model.This paper introduces the research progress of high-frequency field-to-line coupling models for multi-conductor transmission line. A detailed analysis and comparison of TRI model and TLST model (two main branches of high-frequency field-to-line coupling model) are given.Then the principle of the TLST model is briefly introduced and the model’s validity and accuracy are illustrated by a simulation example. Finally, the research contents and objectives of high-frequency field-to-line coupling model are summarized and prospected.
参考文献

[1] Taylor C D, Satterwhite R S, Harrison C W. The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field[J]. IEEE Trans Antenn Propag, 1965, 13: 987-989.

[2] Agrawal A K, Price H J, Gurbaxani S H. Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field[J]. IEEE Trans Electromagn Compat, 1980, 22: 119-129.

[3] Rachidi F. Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation fields[J]. IEEE Trans Electromagn Compat, 1993, 35: 404-407.

[4] 贾锐,王庆国,王树峤,等. 基于传输线原理的混响室散射场场线耦合模型[J]. 强激光与粒子束,2014, 26:014006.

    Jia Rui, Wang Qingguo, Wang Shuqiao, et al. Model of field-to-line coupling in a reverberation chamber based on transmission line theory. High Power Laser and Particle Beams, 2014, 26:014006

[5] 王天乐,闫丽萍,赵翔,等. 包含非线性组件的系统级电磁效应分析方法[J]. 强激光与粒子束,2014, 26:073204.

    Wang Tianle ,Yan Liping,Zhao Xiang, et al. System-level analysis method of electromagnetic effects on an electronic system containing nonlinear components. High Power Laser and Particle Beams, 2014, 26:073204

[6] Rachidi F, Tkachenko S. Electromagnetic field interaction with transmission lines from classical theory to HF radiation effects[M]. London, U.K.: WIT Press, 2008.

[7] Tkatchenko S, Rachidi F, Ianoz M. Electromagnetic field coupling to a line of finite length: Theory and fast iterative solutions in frequency and time domains[J]. IEEE Trans Electromagn Compat, 1995, 37: 509-518.

[8] Tkatchenko S, Rachidi F, Ianoz M. High-frequency electromagnetic field coupling to long terminated lines[J]. IEEE Trans Electromagn Compat, 2001, 44: 117-129.

[9] Haase H, Nitsch J. Full-wave transmission line theory (FWTLT) for the analysis of three-dimensional wire-like structures[C] // Proc 14th Int Zurich Symp Technical Exhibition on Electromagneric Compatibility.2001:235-240.

[10] Haase H, Nitsch J, Steinmetz T. Transmission-line super theory: A new approach to an effective calculation of electromagnetic interactions[J]. Radio Sci Bulletin,2003, 307:33-60.

[11] Mei K K. Theory of Maxwellian circuits[J]. The Radio Science Bulletin, 2003,305: 6-13.

[12] Maffucci A, Miano G, Villone F. Full-wave transmission-line theory[J]. IEEE Trans Magn, 2003,39(3):1594-1597.

[13] Maffucci A, Miano G, Villone F. An enhanced transmission line model for conducting wires[J]. IEEE Trans Electromagn Compat, 2004,46(4): 512-528.

[14] Haase H, Steinmetz T, Nitsch J. New propagation models for electromagnetic waves along uniform and nonuniform cables[J]. IEEE Trans Electromagn Compat, 2004,46(3): 345-352.

[15] Haase H. Full-wave field interactions of nonuniform transmission lines[D]. Otto-von-Guericke-University Magdeburg, 2005.

[16] Vukicevic A, Rachidi F, Rubinstein M, et al. On the evaluation of antenna-mode currents along transmission lines[J]. IEEE Trans Electromagn Compat, 2006, 48(4): 693-700.

[17] Poljak D, Rachidi F, Tkachenko S. Generalized form of telegrapher’s equations for the electromagnetic field coupling to finite-length lines above a lossy ground[J]. IEEE Trans Electromagn Compat, 2007, 49(3): 689-697.

[18] Poljak D, Shoory A, Rachidi F, et al. Time-domain generalized telegrapher’s equations for the electromagnetic field coupling to finite length wires above a lossy ground[J]. IEEE Trans Electromagn Compat, 2012, 54(1): 218-224.

[19] Nitsch J, Gronwald F, Wollenberg G. Radiating nonuniform transmission-line systems and the partial element equivalent circuit method[M]. New York: Willey, 2009.

[20] Nitsch J, Tkachenko S. High-frequency multiconductor transmission-line theory[J]. Found Phys, 2010, 40: 1231-1252.

[21] Brignone M, Delfino F, Procopio R, et al. An effective approach for high-frequency electromagnetic field-to-line coupling analysis based on regularization techniques[J]. IEEE Trans Electromagn Compat, 2012, 54(6): 1289-1297.

[22] Brignone M, Delfino F, Procopio R, et al. An equivalent two-port model for a transmission line of finite length accounting for high-frequency effects[J]. IEEE Trans Electromagn Compat, 2014, 56(6):1657-1665.

[23] Rambousky R, Nitsch J B, and Garbe H. Application of the transmission-line super theory to multiwire TEM-waveguide structures[J]. IEEE Trans Electromagn Compat, 2013, 55(6): 1311-1318.

[24] Chabane S, Besnier P, Klingler M. Extension of the transmission line theory application with modified enhanced per-unit-length parameters [C] // Progress in Electromagnetics Research M, 2013, 32: 229-244.

[25] Besnier P, Chabane S, Klingler M. Some limiting aspects of transmission line theory and possible improvements[J]. IEEE Electromagnetic Compatibility Magazine, 2014, 3(2): 66-75.

[26] 和伟, 郝建明, 高攸纲. 高频传输线方程适用性的讨论[J]. 电波科学学报, 2000, 15(3): 275-277.

    He Wei, Hao Jianming, Gao Yougang. Discussion of transmission line equations at high frequency. Chinese Journal of Radio Science, 2000, 15(3): 275-277

[27] 王晓华. 外场激励下集成电路互连线的传输线方程及其求解[D]. 成都: 电子科学大学,2005.

    Wang Xiaohua.Transmission line equation and its solution of IC interconnect excited by an external electromagnetic field. Chengdu: University of Electronic Science and Technology of China, 2005

[28] 沈文辉, 梅冠香. 麦克斯韦电路理论的研究与发展[J]. 科技通报, 2010, 26(2): 318-323.

    Shen Wenhui, Mei Guanxiang. The development and investigation of theory of maxwellian circuits.Bulletin of Science and Technology, 2010, 26(2): 318-323

[29] 陈小平. 非均匀多导体传输线耦合分析与计算[D]. 长沙: 国防科学技术大学, 2010.

    Chen Xiaoping. The analysis and computation of coupling on the non-uniform multiconductor transmission lines. Changsha: National University of Defense Technology,2010

[30] 王川川, 汪连栋, 曾勇虎,等. 场线耦合问题研究现状及其发展综述[J]. 中国电子科学研究院学报, 2014, 9(4):353-359.

    Wang Chuanchuan, Wang Liandong, Zeng Yonghu, et al. The present research and development trend of transmission line system’s coupling with electromagnetic fields. Journal of China Academy of Electronics and Information Technology, 2014, 9(4):353-359

[31] 徐龙华. 高频单导体传输线模型及其乘积积分算法[D]. 成都: 四川大学, 2014.

    Xu Longhua. High-frequency single-conductor transmission line model and its product integral algorithm.Chengdu: Sichuan University, 2014

[32] 谭莹莹. 连接非线性组件的高频场线耦合研究[D]. 成都: 四川大学,2014.

    Tan Yingying. Analysis of high-frequency electromagnetic field coupling to transmission line connecting with nonlinear. Chengdu: Sichuan University, 2014

赵翔, 晏奇林, 闫丽萍. 多导体传输线高频场线耦合模型的研究综述[J]. 强激光与粒子束, 2015, 27(12): 120201. Zhao Xiang, Yan Qilin, Yan Liping. Review of high-frequency field-to-line coupling models with multi-conductor transmission line[J]. High Power Laser and Particle Beams, 2015, 27(12): 120201.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!