Matter and Radiation at Extremes, 2020, 5 (3): 038401, Published Online: Nov. 25, 2020   

Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen

Author Affiliations
1 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
2 High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
3 Center for the Study of Matter at Extreme Conditions and Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33199, USA
4 Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
5 HPCAT, X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
6 MAX IV Laboratory, Lund University, 22100 Lund, Sweden
7 Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Uppsala S-75120, Sweden
8 Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
9 Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
Copy Citation Text

Cheng Ji, Bing Li, Wenjun Liu, Jesse S. Smith, Alexander Björling, Arnab Majumdar, Wei Luo, Rajeev Ahuja, Jinfu Shu, Junyue Wang, Stanislav Sinogeikin, Yue Meng, Vitali B. Prakapenka, Eran Greenberg, Ruqing Xu, Xianrong Huang, Yang Ding, Alexander Soldatov, Wenge Yang, Guoyin Shen, Wendy L. Mao, Ho-Kwang Mao. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5(3): 038401.

References

[1] R. Jeanloz. Physical chemistry at ultrahigh pressures and temperatures. Annu. Rev. Phys. Chem., 1989, 40: 237-259.

[2] M. Eremets, A. O. Lyakhov, Y. Ma, S. Medvedev, A. R. Oganov, V. Prakapenka, I. Trojan, M. Valle, Y. Xie. Transparent dense sodium. Nature, 2009, 458: 182-185.

[3] C.-S. Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 2020, 5: 018202.

[4] G. Geneste, D. Laniel, P. Loubeyre, M. Mezouar, G. Weck. Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa. Phys. Rev. Lett., 2019, 122: 066001.

[5] M. Kim, J. Smith, D. Tomasino, C.-S. Yoo. Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with Colossal Raman intensity. Phys. Rev. Lett., 2014, 113: 205502.

[6] R. Boehler, D. A. Dzivenko, M. I. Eremets, A. G. Gavriliuk, I. A. Trojan. Single-bonded cubic form of nitrogen. Nat. Mater., 2004, 3: 558-563.

[7] M. Ahart, M. Baldini, Z. M. Geballe, R. J. Hemley, Y. Meng, A. K. Mishra, M. Somayazulu, V. V. Struzhkin. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122: 027001.

[8] F. F. Balakirev, L. Balicas, S. P. Besedin, A. P. Drozdov, M. I. Eremets, D. E. Graf, E. Greenberg, D. A. Knyazev, P. P. Kong, M. A. Kuzovnikov, V. S. Minkov, S. Mozaffari, V. B. Prakapenka, M. Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019, 569: 528-531.

[9] R. J. Needs, C. J. Pickard. Ab initio random structure searching. J. Phys.: Condens. Matter, 2011, 23: 053201.

[10] J. Lv, Y. Ma, Y. Wang, L. Zhu. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B, 2010, 82: 094116.

[11] C. W. Glass, A. R. Oganov. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys., 2006, 124: 244704.

[12] A. P. Drozdov, M. I. Eremets, V. Ksenofontov, S. I. Shylin, I. A. Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525: 73-76.

[13] Z. Cai, J. Chen, C. Ji, B. Li, W. Liu, H.-k. Mao, J. Wang, R. Xu, K. Yang, W. Yang. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl. Acad. Sci. U. S. A., 2018, 115: 1713-1717.

[14] H. Cynn, W. J. Evans, Z. Jenei, M. J. Lipp, E. F. O’Bannon, S. T. Weir. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun., 2018, 9: 3563.

[15] A. Dewaele, P. Loubeyre, O. Marie, M. Mezouar, F. Occelli. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun., 2018, 9: 2913.

[16] A. M. Abakumov, N. Dubrovinskaia, L. Dubrovinsky, V. B. Prakapenka. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun., 2012, 3: 1163.

[17] A. Dewaele, P. Loubeyre. Pressurizing conditions in helium-pressure-transmitting medium. High Pressure Res., 2007, 27: 419-429.

[18] R. J. Hemley, H.-k. Mao. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys., 1994, 66: 671-692.

[19] I. F. Silvera, R. J. Wijngaarden. New low-temperature phase of molecular deuterium at ultrahigh pressure. Phys. Rev. Lett., 1981, 47: 39.

[20] X. J. Chen, E. Gregoryanz, R. T. Howie, X. D. Liu, H. C. Zhang. High-pressure behavior of hydrogen and deuterium at low temperatures. Phys. Rev. Lett., 2017, 119: 065301.

[21] R. J. Hemley, H. K. Mao. Phase transition in solid molecular hydrogen at ultrahigh pressures. Phys. Rev. Lett., 1988, 61: 857.

[22] A. F. Goncharov, E. Gregoryanz, C. L. Guillaume, R. T. Howie, T. Scheler. Mixed molecular and atomic phase of dense hydrogen. Phys. Rev. Lett., 2012, 108: 125501.

[23] M. I. Eremets, I. A. Troyan. Conductive dense hydrogen. Nat. Mater., 2011, 10: 927-931.

[24] E. Gregoryanz, C. L. Guillaume, R. T. Howie, T. Scheler. Proton tunneling in phase IV of hydrogen and deuterium. Phys. Rev. B, 2012, 86: 214104.

[25] P. Dalladay-Simpson, E. Gregoryanz, R. T. Howie. Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature, 2016, 529: 63-67.

[26] P. Dumas, P. Loubeyre, F. Occelli. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K. Phys. Rev. B, 2013, 87: 134101.

[27] A. F. Goncharov, E. Gregoryanz, R. T. Howie. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures. J. Appl. Phys., 2013, 114: 073505.

[28] I. Chuvashova, A. F. Goncharov, C. Ji, H.-k. Mao. Intermolecular coupling and fluxional behavior of hydrogen in phase IV. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 25512-25515.

[29] R. LeToullec, P. Loubeyre, F. Occelli. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen. Nature, 2002, 416: 613-617.

[30] M. Ahart, R. Boehler, R. J. Hemley, Z. Liu, C.-s. Zha. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy. Phys. Rev. Lett., 2013, 110: 217402.

[31] A. Drozdov, M. I. Eremets, P. Lerch, I. A. Troyan. Infrared study of hydrogen up to 310 GPa at room temperature. High Pressure Res., 2013, 33: 377-380.

[32] R. J. Hemley, Z. Liu, C. S. Zha. Synchrotron infrared measurements of dense hydrogen to 360 GPa. Phys. Rev. Lett., 2012, 108: 146402.

[33] P. Dumas, P. Loubeyre, F. Occelli. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature, 2020, 577: 631-635.

[34] R. J. Needs, C. J. Pickard. Structure of phase III of solid hydrogen. Nat. Phys., 2007, 3: 473-476.

[35] W. Cui, H. Liu, Y. Ma, L. Zhu. Room-temperature structures of solid hydrogen at high pressures. J. Chem. Phys., 2012, 137: 074501.

[36] M. Martinez-Canales, R. J. Needs, C. J. Pickard. Density functional theory study of phase IV of solid hydrogen. Phys. Rev. B, 2012, 85: 214114.

[37] H. Liu, Y. Ma. Proton or deuteron transfer in phase IV of solid hydrogen and deuterium. Phys. Rev. Lett., 2013, 110: 025903.

[38] P. Dalladay-Simpson, N. D. Drummond, E. Gregoryanz, R. T. Howie, P. Lopez Rios, B. Monserrat, R. J. Needs, C. J. Pickard. Structure and metallicity of phase V of hydrogen. Phys. Rev. Lett., 2018, 120: 255701.

[39] L. W. Finger, R. M. Hazen, R. J. Hemley, H. K. Mao. Single-crystal x-ray diffraction of n-H2 at high pressure. Phys. Rev. B, 1987, 36: 3944-3947.

[40] D. E. Cox, L. W. Finger, R. M. Hazen, R. J. Hemley, A. P. Jephcoat, H. K. Mao, C. S. Zha. Synchrotron x-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals. Science, 1988, 239: 1131-1134.

[41] L. W. Finger, M. Hanfland, D. Hausermann, R. J. Hemley, R. LeToullec, P. Loubeyre, H. K. Mao. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature, 1996, 383: 702-704.

[42] Y. Akahama, N. Hirao, H. Kawamura, M. Nishimura, Y. Ohishi, K. Takemura. Evidence from x-ray diffraction of orientational ordering in phase III of solid hydrogen at pressures up to 183 GPa. Phys. Rev. B, 2010, 82: 060101.

[43] Y. Akahama, N. Hirao, Y. Mizuki, S. Nakano, Y. Ohishi. Raman scattering and X-ray diffraction studies on phase III of solid hydrogen. J. Phys.: Conf. Ser., 2017, 950: 042060.

[44] R. Ahuja, E. Greenberg, X. Huang, C. Ji, B. Li, W. Liu, W. Luo, A. Majumdar, H.-K. Mao, W. L. Mao, Y. Meng, V. B. Prakapenka, G. Shen, J. Shu, S. Sinogeikin, J. S. Smith, J. Wang, R. Xu, W. Yang. Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature, 2019, 573: 558-562.

[45] R. Boehler, K. De Hantsetters. New anvil designs in diamond-cells. High Pressure Res., 2004, 24: 391-396.

[46] R. Hrubiak, E. Rod, G. Shen, S. Sinogeikin. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Rev. Sci. Instrum., 2015, 86: 072202.

[47] O. L. Anderson, D. G. Isaak, S. Yamamoto. Anharmonicity and the equation of state for gold. J. Appl. Phys., 1989, 65: 1534-1543.

[48] P. M. Bell, H. K. Mao, J. Xu. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res., 1986, 91: 4673-4676.

[49] N. Hirao, K. Hirose, S. I. Kawaguchi, Y. Ohishi, E. Ohtani, K. Shimizu. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8. Matter Radiat. Extremes, 2020, 5: 018403.

[50] V. B. Prakapenka, C. Prescher. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res., 2015, 35: 223-230.

[51] M. Wojdyr. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr., 2010, 43: 1126-1128.

[52] M. Alvaro, R. Angel, J. Gonzalez-Platas, F. Nestola. EosFit7-GUI: A new graphical user interface for equation of state calculations, analyses and teaching. J. Appl. Crystallogr., 2016, 49: 1377-1382.

[53] R. Hrubiak, G. Shen, J. S. Smith. Multimode scanning X-ray diffraction microscopy for diamond anvil cell experiments. Rev. Sci. Instrum., 2019, 90: 025109.

[54] P. M. Bell, R. M. Chrenko, R. C. DeVries, K. J. Dunn, H. K. Mao. Absolute pressure measurements and analysis of diamonds subjected to maximum static pressures of 1.3-1.7 Mbar. Rev. Sci. Instrum., 1979, 50: 1002-1009.

[55] , C. H. Carter, M. Dudley, W. Huang, X. R. Huang, W. Si, W. M. Vetter. Superscrew dislocation contrast on synchrotron white-beam topographs: An accurate description of the direct dislocation image. J. Appl. Cryst., 1999, 32: 516-524.

[56] X.Huang and A. T.Macrander, AIP Conf. Proc.1234, 191 (2010).

[57] A. Cunsolo, X. Huang, A. H. Said, Y. V. Shvyd’ko, S. Stoupin. High-reflectivity high-resolution X-ray crystal optics with diamonds. Nat. Phys., 2010, 6: 196-199.

[58] R. André, A. Dewaele, J. Härtwig, P. Loubeyre. An x-ray topographic study of diamond anvils: Correlation between defects and helium diffusion. J. Appl. Phys., 2006, 99: 104906.

[59] R. J. Hemley, H. K. Mao. Optical transitions in diamond at ultrahigh pressures. Nature, 1991, 351: 721-724.

[60] R. P. Dias, I. F. Silvera. Observation of the Wigner-Huntington transition to metallic hydrogen. Science, 2017, 355: 715-718.

[61] Z. Cai, Y. Ding, R. J. Hemley, J. Kung, W. Liu, H.-k. Mao, W. L. Mao, J. Shu, L. Wang, W. Yang. Nanoprobe measurements of materials at megabar pressures. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 6140-6145.

[62] G. J. Ackland, J. S. Loveday. Structures of solid hydrogen at 300 K. Phys. Rev. B, 2020, 101: 094104.

[63] L.Dubrovinsky, N.Dubrovinskaia, and M. I.Katsnelson, “No evidence of isostructural electronic transitions in compressed hydrogen,” (2019).

[64] Y. Katayama, T. Kikegawa, O. Shimomura, K. Tsuji, K. Yaoita. Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator. Rev. Sci. Instrum., 1997, 68: 2106-2110.

[65] S. Bauchau, G. Blattmann, W. Crichton, P. Faure, M. Mezouar, N. Rambert, B. Sitaud. Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures. Rev. Sci. Instrum., 2002, 73: 3570-3574.

[66] F. Datchi, G. Garbarino, P. Loubeyre, M. Mezouar, S. Ninet, D. Spaulding, G. Weck. Use of a multichannel collimator for structural investigation of low-Z dense liquids in a diamond anvil cell: Validation on fluid H2 up to 5 GPa. Rev. Sci. Instrum., 2013, 84: 063901.

[67] S. Jahn, V. B. Prakapenka, C. Prescher, L. B. Skinner, J. Stefanski, Y. Wang. Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures. Proc. Natl. Acad. Sci. U. S. A., 2017, 114: 10041-10046.

[68] T. S. Duffy, R. J. Hemley, H.-k. Mao, S. Speziale, C.-S. Zha. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. J. Geophys. Res., 2001, 106: 515-528.

[69] Y. Akahama, H. Kawamura. Pressure calibration of diamond anvil Raman gauge to 410 GPa. J. Phys.: Conf. Ser., 2010, 215: 012195.

[70] C. Ji, B. Li, H. Mao, W. Yang. Crystallographic studies of ultra-dense solid hydrogen,. Chin. J. High Pressure Phys., 2020, 34(2).

[71] M. Eriksson, C. Quitmann, J. F. van der Veen. Diffraction-limited storage rings: A window to the science of tomorrow. J. Synchrotron Radiat., 2014, 21: 837-842.

Cheng Ji, Bing Li, Wenjun Liu, Jesse S. Smith, Alexander Björling, Arnab Majumdar, Wei Luo, Rajeev Ahuja, Jinfu Shu, Junyue Wang, Stanislav Sinogeikin, Yue Meng, Vitali B. Prakapenka, Eran Greenberg, Ruqing Xu, Xianrong Huang, Yang Ding, Alexander Soldatov, Wenge Yang, Guoyin Shen, Wendy L. Mao, Ho-Kwang Mao. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen[J]. Matter and Radiation at Extremes, 2020, 5(3): 038401.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!