光子学报, 2019, 48 (3): 0322002, 网络出版: 2019-04-02   

大视场大相对孔径斜轴离轴三反望远镜的光学设计

Optical Design of Wide Field View and Large Relative Aperture Off-axis Three-mirror Reflective System with Tilted Optical Axis
作者单位
中国科学院上海技术物理研究所 空间主动光电技术重点实验室, 上海 200083
摘要
推导了离轴三反光学系统的线性像散平衡条件, 在此基础上采用倾斜母镜光轴的方法设计了大相对孔径时大视场像散校正的斜轴离轴三反光学系统.系统视场为5°×5°, 相对口径为1/3.1, 口径为250 mm, 波段为400~2 500 nm.将该系统与相同光学参数的共轴二次非球面离轴三反系统和共轴高阶偶次非球面离轴三反系统进行对比.结果表明斜轴离轴三反光学系统所有视场的光学传递函数在17 lp/mm处均大于0.73, 由于反射面采用圆锥曲面, 其在偏轴视场成像质量方面有明显优势.对斜轴离轴三反光学系统的加工与装调进行了分析, 其公差较为宽松, 验证了其结构实现的可行性.
Abstract
The linear astigmatism balance condition of the off-axis three-mirror optical system was deduced, on that base the off-axis three-mirror reflective system for astigmatism correction with large relative aperture and large field of view was proposed by tilting the optical axis. The field of view is 5°×5°, relative aperture is 1/3.1, entrance pupil diameter is 250 mm and spectral range is 400~2 500 nm. The proposed system was compared with the off-axis three-mirror reflective system of coaxial quadratic aspheric surface and the off-axis three-mirror reflective system of coaxial high-order even aspheric surface with the same optical parameters. The results show that the optical transfer function of off-axis three-mirror reflective system with tilted optical axis is greater than 0.73 at 17 lp/mm in all field of view. It uses conical surfaces and shows obvious advantages in imaging quality. In addition, the processing and adjustment of off-axis three-mirror reflective system with tilted optical axis are analyzed, the tolerance is relatively loose and the structure can be realized.
参考文献

[1] 赵文才.改进的离轴三反光学系统的设计[J].光学精密工程, 2011, 19(12): 2837-2843.

    ZHAO Wen-cai. Design of improved off-axial TMA optical systems[J]. Optics and Precision Engineering, 2011, 19(12): 2837-2843.

[2] 黄晓园, 黄铭烨, 陈冠亮, 等. 高分辨率空间遥感卫星的离轴三反光学系统设计[J].光学与光电技术, 2018,16(4): 75-79.

    HUANG Xiao-yuan, HUANG Ming-ye, CHEN Guan-liang, et al .Off-axis three-mirror reflective system for high resolution space remote sensing satellite[J]. Optics & Optoelectronic Technology, 2018, 16(4): 75-79.

[3] FIGOSKI J W. QuickBird telescope: the reality of large high-quality commercial space optics[C]. SPIE, 1999, 3779: 22-24.

[4] MENDENHALLJ A, BRUCE C F, DIGENIS C J, et al. Eo-1 advanced land imager technology validation report[R]. Massachusetts Institute of Technology Massachusetts, 2002: 3-5.

[5] CALAMAI L, BARSOTTI S, FOSSATI E, et al .Ring-field TMA for PRISMA: theory, optical design, and performance measurements[C]. SPIE, 2015, 9626: 5-10.

[6] 李元广.印度第二代遥感卫星IRS-1C[J].中国航天, 1993, 474(2): 28-31.

    LI Guang-yuan. India's second generation remote sensing satellite IRS-1C[J]. Aerospace China, 1993, 474(2): 28-31.

[7] 张科科, 阮宁娟, 傅丹鹰.国外空间用三反离轴相机发展分析与思考[J]. 航天返回与遥感, 2008, 29(3): 63-70.

    ZHANG Ke-ke, RUAN Ning-juan, FU Dan-ying. Analysis and consideration of development of overseas space off-axis TMA system camera[J]. Spacecraft Recovery & Remote Sensing, 2008, 29(3): 63-70.

[8] RISSE S. Novel TMA telescope based on ultraprecise metal mirrors[C]. SPIE, 2008, 7010: 6-11.

[9] 沙巍, 陈长征, 许艳军, 等. 离轴三反空间相机主三镜共基准一体化结构[J]. 光学精密工程, 2015,23(6): 1612-1619.

    SHA Wei, CHEN Chang-zheng, XU Yan-jun, et al. Integrated primary and tertiary mirror components from common base line of off-axis TMA space camera[J]. Optics and Precision Engineering, 2015, 23(6): 1612-1619.

[10] MALACARA D. Optical shop testing[M]. 3nd. Canada, 2007: 468-471.

[11] 赵宇宸, 何欣, 冯文田, 等. 同轴偏视场共孔径面阵成像光学系统设计[J]. 红外与激光工程, 2018, 47(7): 218-225.

    ZHAO Yu-chen, HE Xin, FENG Wen-tian, et al. Design of common aperture coaxial field-bias optical syste used in area arry imaging senor[J]. Infrared and Laser Engineering, 2018, 47(7): 218-225.

[12] 李旭阳, 倪栋伟, 杨明洋, 等. 基于自由曲面的大视场空间相机光学系统设计[J].光子学报, 2018,47(9): 0922003.

    LI Xu-yang, NI Dong-wei, YANG Ming-yang, et al. Design of large field of view space camera optical system based on freeform surfaces[J]. Acta Photonica Sinica, 2018, 47(9): 0922003.

[13] CHANG S. Off-axis reflecting telescope with axially-symmetric optical property and its applications[C]. SPIE, 2006, 6265: 5-8.

[14] WANGNER-GENTNER A. A simple method to design astigmatic off-axis mirrors[J]. Infraed Physics&Technology, 2007(50): 42-46.

[15] THOMPSO K P. Aberration fields in tilted and decentered optical systems[D]. Arizona: University of Arizona, 1980: 12-24.

[16] CHANG S. Linear astigmatism of confocal off-axis reflective imaging systems with N-conic mirrors and its elimination[J]. Journal of the Optical Society of America A, 2015, 32(5): 852-859.

[17] 陈建军. 计算机辅助装调技术在离轴三反相机装调中的应用[D]. 西安:中国科学院西安光学精密机械研究所,2013: 13-28.

    CHEN Jian-jun. Application of computer aided aligment technique to an three-mirror off-axis optical system[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics, CAS, 2013: 13-28.

[18] 王彬, 伍凡, 叶玉堂. 离轴三反系统计算机辅助装调[J].红外与激光工程, 2016, 45(11): 250-256.

    WANG Bin, WU Fan, YE Yu-tang. Computer aided alignment for off-axis TMA system[J]. Infrared and Laser Engineering, 2016, 45(11): 250-256.

刘强, 王欣, 黄庚华, 舒嵘. 大视场大相对孔径斜轴离轴三反望远镜的光学设计[J]. 光子学报, 2019, 48(3): 0322002. LIU Qiang, WANG Xin, HUANG Geng-hua, SHU Rong. Optical Design of Wide Field View and Large Relative Aperture Off-axis Three-mirror Reflective System with Tilted Optical Axis[J]. ACTA PHOTONICA SINICA, 2019, 48(3): 0322002.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!