红外与毫米波学报, 2019, 38 (2): 02154, 网络出版: 2019-05-10  

基于分立器件和石英基片的0.68 THz和1.00 THz三倍频器

0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass
作者单位
1 中国工程物理研究院微系统与太赫兹研究中心, 四川 成都 610200
2 中国工程物理研究院电子工程研究所, 四川 绵阳 621900
引用该论文

蒋均, 陈鹏, 何月, 田遥岭, 郝海龙, 成彬彬, 林长星. 基于分立器件和石英基片的0.68 THz和1.00 THz三倍频器[J]. 红外与毫米波学报, 2019, 38(2): 02154.

JIANG Jun, CHEN Peng, HE Yue, TIAN Yao-Ling, HAO Hai-Long, CHENG Bin-Bin, LIN Chang-Xing. 0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02154.

参考文献

[1] Akyildiz I F, Jornet J M, Han C. Terahertz band: Next frontierfor wireless communications[J]. Phys. Commun., 2014, 12: 16-32.

[2] Mehdi I, Chattopadhyay G, Schlecht E, et al. Terahertz multiplier circuits[J]. IEEE MTT-S Int.Microw. Symp. Dig., 2006, 341-344.

[3] Treuttela J, Schlechta E, Silesa J, et al. A 2 THz Schottky solid-state heterodyne receiver for atmosphericstudies[J]. Proc. of SPIE. 2016, 9914:1O-1-9.

[4] Siegel P H. THz technology[J]. IEEE Trans. Microw.Theory Techn.2002, 50(3):910-928.

[5] Chattopadhyay G. Technology, capabilities,and performance of low power terahertzsources[J]. IEEE Trans. THz Sci. Technol., 2011, 1(1): 33-53.

[6] Radisic V, Leong K M K H, Mei X B, et al. Power amplification at 0.65 THz using InP HEMTs[J]. IEEE Transactions on Mircrowave Theory and Techniques, 2012, 60(3):724-729.

[7] Li Y, Wang L G, Xiong Y Z. A frequency doubler/modulator with 45 dBm output power at 170 GHz using SiGe HBTs[J]. Microwave & Wireless Components Letters IEEE, 2015, 25(3):181-183.

[8] Suzuki S, Asada M, Teranishi A, et al. Fundamental oscillation of resonant tunneling diodes above1.00 THz at room temperature[J]. Appl. Phys. Lett.,2010, 97(24):42102.

[9] Malko A, Bryllert T, Vukusic J, et al. A 474 GHz HBV frequencyquintupler integrated on a 20 μm thicksilicon substrate[J]. IEEE Trans. THz Sci.Technol., 2014, 5(1):85-91.

[10] Crowe T W, Foley B, Durant S, et al. Instrumentation for metrology from MMW to THz[C]. Presented at the 4th UK/EU-China Workshop on Millim. Wave and THz Technol. (4th UCMMT), Glasgow, U.K., Sep. 2011.

[11] Virginia Diodes Inc. (Online). www.vadiodes.com/en/products/custom-transmitters.

[12] Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Transactions on Terahertz Science & Technology, 2017, 4(2):277-287.

[13] Champlin K S. Eisenstein G. Cutoff frequency of submillimeter Schottky barrier diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 1978, 26:31-34.

[14] Schlecht E. A high-power wideband cryogenic 200 GHz Schottky ‘Substrateless’ multiplier: Modeling, design and results[C]. In IEEE MTT-S Int. Microw. Symp. Dig., 2001.

[15] Chattopadhyay G. Schlecht E, Gill J. A broadband 800 GHz Schottky balanced doubler[J]. IEEE Microw. Wireless Compon. DOI: 10.1109/7260.993286

[16] Porterfield D W, Crowe T W, Bradley R F, et al. A high-power fixed-tuned millimeter-wave balanced frequency doubler[J]. IEEE Trans. Microw. Theory Techn., 1999, 47(4): 419-425.

[17] Zhang X, Yu H, Xu H, et al. Design of a high-performance balanced frequency tripler at 94 GHz[C]. Radar Conference 2013, IET International. IET, 2013:1-3.

[18] Erickson N, Tuovinen J A. Waveguide tripler for 720-880 GHz[C]. International Symposium on Space Terahertz Technology. Sixth International Symposium on Space Terahertz Technology, 1995:191-198.

[19] Maiwald F, Schlecht E, Maestrini A, et al. THz frequency multiplier chains based on planar Schottky diodes[J]. Proc. SPIE, 2003, 4855:447-458.

[20] Bruston J, Maestrini A, Pukala D, et al. A 1.2 THz planar tripler using GaAs membrane based chips[C]. In Proc. 12th Int. Symp. Space Terahertz Tech., San Diego, CA, USA, Dec. 2001:310.

[21] Maestrini A, Bruston J, Pukala D, et al. Performance of a 1.2 THz frequency tripler using a GaAs frameless membrane monolithic circuit[C]. In IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2001: 1657-1660.

[22] Xin H, Cheng X, Deng J, et al. Design of a novel 0.325~0.5 THz tripler based on a customized TMIC[C]. Millimetre Waves and Terahertz Technologies. IEEE, 2017:86-88.

[23] http://vadiodes.com/en/products/custom-transmitters

蒋均, 陈鹏, 何月, 田遥岭, 郝海龙, 成彬彬, 林长星. 基于分立器件和石英基片的0.68 THz和1.00 THz三倍频器[J]. 红外与毫米波学报, 2019, 38(2): 02154. JIANG Jun, CHEN Peng, HE Yue, TIAN Yao-Ling, HAO Hai-Long, CHENG Bin-Bin, LIN Chang-Xing. 0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02154.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!