红外与毫米波学报, 2019, 38 (2): 02154, 网络出版: 2019-05-10  

基于分立器件和石英基片的0.68 THz和1.00 THz三倍频器

0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass
作者单位
1 中国工程物理研究院微系统与太赫兹研究中心, 四川 成都 610200
2 中国工程物理研究院电子工程研究所, 四川 绵阳 621900
摘要
介绍了基于反向平衡式二极管和石英基片完成, 而非集成电路的0.68 THz和1.00 THz频段平衡式三倍频.此项工作提高了二极管等效电路模型, 该二极管模型不仅包括I/V和C/V, 同时还加入了等离子体共振和趋肤效应, 将薄膜电路减薄至15 μm, 机械加工精度提高至3 μm内, 使工作频率提高至1.2 THz.通过场路协同仿真, 利用高精度太赫兹装配工艺, 最终实现工作频率为0.68 THz和倍频效率为1 %的三倍频器, 工作频率为1.00 THz和倍频效率为0.6 %的三倍频器, 输出相对带宽均大于10 %.
Abstract
This paper introduces two designs of balanced frequency triplers in 0.68 THz and 1.00 THz bands. The proposed triplers are based on discrete antiparallel Schottky diodes and quartz glass instead of terahertz integrated circuit. The merits of this work are attributed to the improvement of the diode model, the thinned quartz glass film and the machining accuracy of the waveguide. The improved LEC diode model considers not only the current-voltage (I/V) and capacitance-voltage (C/V) but also plasma resonance and skin effect. The quartz glass film is thinned to 15um and can be used for up to 1.2 THz. The machining accuracy of the waveguide is (±3) μm for terahertz applications with channel size 60 μm. The measurement shows a peak output power above 160 μW and 60 μW for the 0.68 THz and 1.00 THz triplers, respectively. Moreover, the efficiencies of the 0.68 THz and 1.00 THz triplers are around 1% and 0.6% correspondingly. The output frequency bandwidths are both more than 10%.
参考文献

[1] Akyildiz I F, Jornet J M, Han C. Terahertz band: Next frontierfor wireless communications[J]. Phys. Commun., 2014, 12: 16-32.

[2] Mehdi I, Chattopadhyay G, Schlecht E, et al. Terahertz multiplier circuits[J]. IEEE MTT-S Int.Microw. Symp. Dig., 2006, 341-344.

[3] Treuttela J, Schlechta E, Silesa J, et al. A 2 THz Schottky solid-state heterodyne receiver for atmosphericstudies[J]. Proc. of SPIE. 2016, 9914:1O-1-9.

[4] Siegel P H. THz technology[J]. IEEE Trans. Microw.Theory Techn.2002, 50(3):910-928.

[5] Chattopadhyay G. Technology, capabilities,and performance of low power terahertzsources[J]. IEEE Trans. THz Sci. Technol., 2011, 1(1): 33-53.

[6] Radisic V, Leong K M K H, Mei X B, et al. Power amplification at 0.65 THz using InP HEMTs[J]. IEEE Transactions on Mircrowave Theory and Techniques, 2012, 60(3):724-729.

[7] Li Y, Wang L G, Xiong Y Z. A frequency doubler/modulator with 45 dBm output power at 170 GHz using SiGe HBTs[J]. Microwave & Wireless Components Letters IEEE, 2015, 25(3):181-183.

[8] Suzuki S, Asada M, Teranishi A, et al. Fundamental oscillation of resonant tunneling diodes above1.00 THz at room temperature[J]. Appl. Phys. Lett.,2010, 97(24):42102.

[9] Malko A, Bryllert T, Vukusic J, et al. A 474 GHz HBV frequencyquintupler integrated on a 20 μm thicksilicon substrate[J]. IEEE Trans. THz Sci.Technol., 2014, 5(1):85-91.

[10] Crowe T W, Foley B, Durant S, et al. Instrumentation for metrology from MMW to THz[C]. Presented at the 4th UK/EU-China Workshop on Millim. Wave and THz Technol. (4th UCMMT), Glasgow, U.K., Sep. 2011.

[11] Virginia Diodes Inc. (Online). www.vadiodes.com/en/products/custom-transmitters.

[12] Pardo D, Grajal J, Pérez-Moreno C G, et al. An assessment of available models for the design of Schottky-based multipliers up to THz frequencies[J]. IEEE Transactions on Terahertz Science & Technology, 2017, 4(2):277-287.

[13] Champlin K S. Eisenstein G. Cutoff frequency of submillimeter Schottky barrier diodes[J]. IEEE Transactions on Microwave Theory and Techniques, 1978, 26:31-34.

[14] Schlecht E. A high-power wideband cryogenic 200 GHz Schottky ‘Substrateless’ multiplier: Modeling, design and results[C]. In IEEE MTT-S Int. Microw. Symp. Dig., 2001.

[15] Chattopadhyay G. Schlecht E, Gill J. A broadband 800 GHz Schottky balanced doubler[J]. IEEE Microw. Wireless Compon. DOI: 10.1109/7260.993286

[16] Porterfield D W, Crowe T W, Bradley R F, et al. A high-power fixed-tuned millimeter-wave balanced frequency doubler[J]. IEEE Trans. Microw. Theory Techn., 1999, 47(4): 419-425.

[17] Zhang X, Yu H, Xu H, et al. Design of a high-performance balanced frequency tripler at 94 GHz[C]. Radar Conference 2013, IET International. IET, 2013:1-3.

[18] Erickson N, Tuovinen J A. Waveguide tripler for 720-880 GHz[C]. International Symposium on Space Terahertz Technology. Sixth International Symposium on Space Terahertz Technology, 1995:191-198.

[19] Maiwald F, Schlecht E, Maestrini A, et al. THz frequency multiplier chains based on planar Schottky diodes[J]. Proc. SPIE, 2003, 4855:447-458.

[20] Bruston J, Maestrini A, Pukala D, et al. A 1.2 THz planar tripler using GaAs membrane based chips[C]. In Proc. 12th Int. Symp. Space Terahertz Tech., San Diego, CA, USA, Dec. 2001:310.

[21] Maestrini A, Bruston J, Pukala D, et al. Performance of a 1.2 THz frequency tripler using a GaAs frameless membrane monolithic circuit[C]. In IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May 2001: 1657-1660.

[22] Xin H, Cheng X, Deng J, et al. Design of a novel 0.325~0.5 THz tripler based on a customized TMIC[C]. Millimetre Waves and Terahertz Technologies. IEEE, 2017:86-88.

[23] http://vadiodes.com/en/products/custom-transmitters

蒋均, 陈鹏, 何月, 田遥岭, 郝海龙, 成彬彬, 林长星. 基于分立器件和石英基片的0.68 THz和1.00 THz三倍频器[J]. 红外与毫米波学报, 2019, 38(2): 02154. JIANG Jun, CHEN Peng, HE Yue, TIAN Yao-Ling, HAO Hai-Long, CHENG Bin-Bin, LIN Chang-Xing. 0.68 THz and 1.00 THz triplers based on discrete Schottky diodes and quartz glass[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02154.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!