光子学报, 2016, 45 (9): 0927004, 网络出版: 2016-10-19   

冰水混合云对量子卫星通信性能的影响

Influences of the Ice-water Mixed Clouds on the Performance of Quantum Satellite Communication
作者单位
1 西安邮电大学 通信与信息工程学院, 西安 710121
2 西北工业大学 电子信息学院, 西安 710072
3 西安电子科技大学 综合业务网国家重点实验室, 西安710071
摘要
根据冰-水混合云中冰晶和水滴粒子的谱分布函数及消光因子, 得到冰-水混合云的冰水含量比例与量子卫星通信信道之间的衰减关系; 针对比特翻转信道和退极化信道, 分别建立冰水含量比例与信道容量、信道保真度之间的方程; 分析了冰水含量比例对信道建立速率的影响.仿真结果表明:当冰水含量比例分别为1∶2和1∶9时, 比特翻转信道、退极化信道的容量分别为0.65和0.92、0.59和0.95; 当信源字符的概率为0.9时, 比特翻转信道、退极化信道的保真度分别为0.60和0.83、0.89和0.95; 当传输距离为2 km, 纠缠粒子对保真度为0.8时, 信道建立速率分别为7.40 Hz和15.57 Hz.因此, 当量子卫星信号出现较大衰减时, 应根据冰-水混合云的冰水含量比例, 自适应调整量子卫星通信系统的各项参量, 以提高量子卫星通信的可靠性.
Abstract
According to the spectral distribution function and the extinction factor of the ice crystal and the water droplet in the ice-water mixed clouds, the attenuation relationships between the ratio of ice and water and the channel of the quantum satellite communication were attained. For the bit flipping channels and the depolarizing channels, the equations between the ratio of ice and water and the channel capacity, and the channel average fidelity were established respectively. The effect of the ratio of ice and water in the ice-water mixed clouds on the quantum channel establishing rate was analyzed. The simulation results show that, when the ratio of ice and water in the ice-water mixed clouds is 1∶2 and 1∶9, for the bit flipping channel, the channel capacity is 0.65 and 0.92, and for the depolarizing channel that is 0.59 and 0.95 respectively. When the probability of the source character is 0.9, for the bit flipping channel, the channel average fidelity is 0.60 and 0.83, and for the depolarizing channel that is 0.89 and 0.95 respectively. When the transmission distance is 2 km, the fidelity of the entangled particle pair is 0.8, the quantum channel establishing rate is 7.40Hz and 15.57Hz respectively. Therefore, when the quantum satellite signs are appearing a greater attenuation, in order to improve the reliability of the quantum satellite communication, the parameters should be adjusted adaptively in light of the ratio of ice and water in the ice-water mixed clouds.
参考文献

[1] SUN Z, SHINE K P. Studies of the radiative properties of ice and mixed-phase clouds[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(515): 111-137.

[2] 严赵军, 韩芳芳, 易凡, 等. 冰水混合云红外辐射传输特性研究[J]. 红外技术, 2013, 35(1): 56-60.

    YAN Zhao-jun, HAN Fang-fang, YI Fan, et al. Study on ice-water mixed cloud radiation properties[J]. Infrared Technology, 2013, 35(1): 56-60.

[3] 严赵军, 何超, 石俊强, 等. 利用冰水同心球模型反演冰水混合云[J]. 光学与光电技术, 2014, 12(6): 35-39.

    YAN Zhao-jun, HE Cao, SHI Jun-qiang, et al. Ice-water mixed cloud are retrieved based on ice-water concentric spheres model[J]. Optics &Optoelectronic Technology, 2014, 12(6): 35-39.

[4] ADEN A L, KERKER M. Scattering of electromagnetic waves from two concentric spheres[J]. Journal of Applied Physics, 1951, 22(10): 1242-1246.

[5] 陈万奎, 严采蘩. 云中冰晶尺度谱特征与分布函数[J]. 气象,1987, 13(11): 13-17.

    CHENG Wan-kui, YAN Cai-fan. The size distribution of ice erystals within clouds[J]. Meteorological Monthly, 1987, 13(11): 13-17.

[6] 严采蘩, 陈万奎. 对流层下部雨滴谱分布[J]. 应用气象学, 1990, 1(2): 191-198.

    YAN Cai-fan, CHENG Wan-kui. Raindrop particle size distribution in the lower troposphere[J]. Quarterly Journal of Applied Meteorology, 1990, 1(2): 191-198.

[7] 吴举秀, 魏鸣, 黄磊, 等. 对非球形冰晶94GHz云雷达后向散射和衰减的研究[J]. 气象科学, 2016, 36(1): 63-70.

    WU Ju-xiu, WEI Ming, HUANG Lei, et al. Back scattering and attenuation of non-spherical ice crystals with 94 GHz millimeter-wavelength[J]. Journal of Meteorological Science, 2016, 36(1): 63-70.

[8] 苏晓琴, 郭光灿. 量子隐形传态[J]. 物理学进展, 2004, 24(3): 259-273.

    SU Xiao-qing, GUO Guang-can. Quantum teleportation[J]. Progress In Physics, 2004, 24(3): 259-273.

[9] 裴昌幸, 阎毅, 刘丹等. 一种基于纠缠态的量子中继通信系统[J], 光子学报, 2008, 37(12): 2422-2426.

    PEI Chang-xing, YAN Yi, LIU Dan, et al. A quantum repeater communication system based on entanglement[J]. Acta Photonica Sinica, 2008, 37(12): 2422-2426.

[10] 胡钰安, 叶志清. 基于四粒子GHZ态的可控量子双向隐形传态及安全性[J]. 光子学报, 2004, 43(8): 0827001.

    HU Yu-an, YE Zhi-qing. Controlled two-way quantum teleportation via ghz quadripartite entangled state and security[J]. Acta Photonica Sinica, 2004, 43(8): 0827001.

[11] 彭永刚, 巩龙. 无相互作用费米量子信道直积态容量研究[J]. 光子学报, 2011, 40(9): 1392-1396.

    PENG Yong-gang, GONG Long-yan. Tensor product state capacity of non-interacting fermion quantum channel[J]. Acta Photonica Sinca, 2011, 40(9): 1392-1396.

[12] YIN J, REN J G, LU H, et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels[J]. Nature, 2012, 488(7410): 185-188.

[13] 聂敏, 尚鹏钢, 杨光, 等. 中尺度沙尘暴对量子卫星通信信道的影响及性能仿真[J]. 物理学报, 2014, 63(24): 240303.

    NIE Min, SHANG Peng-gang, YANG Guang, et al. Influences of mesoscale sandstorm on the quantum satellite communication channel and perfotmance simulation[J]. Acta Physica Sinica , 2014, 63(24): 240303.

[14] 聂敏, 任杰, 杨光, 等. PM2.5大气污染对自由空间量子通信性能的影响[J]. 物理学报, 2015, 64(15): 150301

    NIE Min, REN Jie, YANG Guang, et al. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication [J]. Acta Physica Sinica , 2015, 64(15): 150301.

[15] 任杰, 聂敏, 杨光, 等. 自然环境中多因子对自由空间量子通信性能的影响[J]. 光子学报, 2015, 44(12): 1227003.

    REN Jie, NIE Min, YANG Guang, et al. Influence of multiple factors of natural environment on the performance of free space quantum communication[J]. Acta Photonica Sinca, 2015, 44(12): 1227003.

[16] FENN R W, OSER H. Scattering properties of concentric soot-water spheres for visible and infrared light[J]. Applied Optics, 1965, 4(11): 1504-1509.

[17] WISCOMBE W J. Improved mie scattering algorithms[J]. Applied Optics, 1980, 19(9): 1505-1509.

[18] LANZAGORTA M. 量子雷达[M]. 周万幸, 吴鸣亚, 胡明春, 等. 译, 北京: 电子工业出版社, 2013: 15-17.

[19] 洪伟伟. 近红外光在云层中的传输特性与偏振分布研究[D]. 合肥: 合肥工业大学, 2013: 38-45.

[20] 蔡嘉, 高隽, 范之国, 等. 湿度影响下的气溶胶粒子的偏振特性[J]. 发光学报, 2013, 34(5): 639-644.

    CAI Jia, GAO Juan, FAN Zhi-guo, et al. The polarization characteristic research of aerosol particles under the humidity influence[J]. Chinese Journal of Luminescence, 2013, 34(5): 639-644.

[21] 尹浩, 马怀新. 军事量子通信概论[M]. 北京: 军事科学出版, 2006: 227-228.

[22] NIELSEN M A, CHUANG I L. 量子计算和量子信息(二)[M]. 郑大钟, 赵千川, 译. 北京: 清华大学出版社, 2005: 57-60.

[23] 陈鹏, 蔡有勋, 蔡晓菲, 等. 基于纠缠态的量子通信网络的量子信道建立速率模型[J]. 物理学报, 2015, 64(4): 040301.

    CHEN Peng, CAI You-xun, CAI Xiao-fei, et al. Quantum channel establishing rate model of quantum communication network based on entangled states[J]. Acta Physica Sinica , 2015, 64(4): 040301.

聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 冰水混合云对量子卫星通信性能的影响[J]. 光子学报, 2016, 45(9): 0927004. NIE Min, REN Jia-ming, YANG Guang, ZHANG Mei-ling, PEI Chang-xing. Influences of the Ice-water Mixed Clouds on the Performance of Quantum Satellite Communication[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0927004.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!