红外与毫米波学报, 2019, 38 (4): 04445, 网络出版: 2019-10-14  

金属-电介质复合材料中非局域效应诱导的偏振分光器

Nonlocality-induced polarization beam splitting via metal-dielectric composites
作者单位
1 苏州大学 物理科学与技术学院,江苏 苏州 215006
2 深圳光启高等理工研究院, 广东 深圳 518000
3 深圳光启尖端技术有限责任公司, 广东 深圳 518000
4 超材料电磁调制技术国家重点实验室, 广东 深圳 518000
摘要
基于具有强非局域效应的金属-电介质多层膜结构提出了三种偏振分光器.当多层膜结构的平均介电常数为零时,横电偏振电磁波对应的等频率曲线为一很小的圆,而横磁偏振电磁波对应的等频率曲线则为两支抛物线,这是由表面等离激元诱导的非局域效应引起的.利用该多层膜结构在不同偏振电磁波下等频率曲线表现出巨大差异这一特性,提出了三种偏振分光器,其中包含厚度远小于波长的超薄偏振分光器.这些结果有望在偏振选择吸收体以及集成光子器件中有潜在应用.
Abstract
Three kinds of polarization beam splitters are designed by using a simple metal-dielectric multilayered structure with strong nonlocality. It is found that the equal frequency contour for the transverse electric polarization is a small circle when the average permittivity is close to zero. At the same time, the equal frequency contour for the transverse magnetic polarization turns to be two branches of parabolas due to the surface plasmon-induced nonlocal effect. Based on the dramatic difference between dispersions of the two polarizations, three kinds of polarization beam splitters are demonstrated, including the ultrathin ones, which may have important applications in polarization-sensitive absorbers and compact optical devices.
参考文献

[1] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Phys. Rev. Lett., 1996, 76: 4773-4776.

[2] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE T. Microw. Theory, 1999, 47: 2075-2084.

[3] Smith D R, Padilla W J, Vier D C, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Phys. Rev. Lett., 2000, 84: 4184-4187.

[4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J], Science, 2001, 292: 77-79.

[5] Pokrovsky A L, Efros A L. Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals[J]. Phys. Rev. B, 2002, 65: 045110.

[6] Belov P A, Marqués R, Maslovski S I, et al. Strong spatial dispersion in wire media in the very large wavelength limit[J], Phys. Rev. B, 2003, 67: 113103.

[7] Simovski C R, Belov P A. Low-frequency spatial dispersion in wire media[J]. Physical Review E, 2004, 70: 046616.

[8] Silveirinha M G. Nonlocal homogenization model for a periodic array of ? -negative rods[J]. Physical Review E, 2006, 73: 046612.

[9] Silveirinha M G, Fernandes C A, Costa J R. Additional boundary condition for a wire medium connected to a metallic surface[J]. New J. Phys., 2008, 10: 053011.

[10] Simovski C R, Belov P A, Atrashchenko A V, et al. Wire metamaterials: Physics and applications[J]. Adv. Mater., 2012, 24: 4229-4248.

[11] Morgado T A, Marcos J S, Costa J T, et al. Reversed rainbow with a nonlocal metamaterial[J]. Appl. Phys. Lett., 2014, 105: 264101.

[12] Brownless J S, Sturmberg B R C P, Argyros A, et al. Guided modes of a wire medium slab: Comparison of effective medium approaches with exact calculations[J]. Phys. Rev. B, 2015, 91: 155427.

[13] Elser J, Podolskiy V A, Salakhutdinov I, et al. Nonlocal effects in effective-medium response of nanolayered metamaterials[J], Appl. Phys. Lett., 2007, 90: 191109.

[14] Chebykin A V, Orlov A A, Vozianova A V, et al. Nonlocal effective medium model for multilayered metal-dielectric metamaterials[J]. Phys. Rev. B, 2011, 84: 115438.

[15] Chebykin A V, Orlov A A, Simovski C R, et al. Nonlocal effective parameters of multilayered metal-dielectric metamaterials[J]. Phys. Rev. B, 2012, 86: 115420.

[16] Sun L, Gao J, Yang X. Giant optical nonlocality near the Dirac point in metal-dielectric multilayer metamaterials[J]. Opt. Express, 2013, 21: 21542-21555.

[17] Chern R L. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials[J], Opt. Express, 2013, 21: 16514-16527.

[18] Zapata-Rodríguez C J, Pastor D, Miret J J, et al. Uniaxial epsilon-near-zero metamaterials: from superlensing to double refraction[J]. J. Nanophotonics, 2014, 8: 083895.

[19] Chern R L, Han D. Nonlocal optical properties in periodic lattice of graphene layers[J]. Opt. Express, 2014, 22: 4817-4829.

[20] Shen L, Yang T, Chau Y. 50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion[J]. Appl. Phys. Lett., 2007, 90:251909.

[21] Shen L, Wu J, Yang T. Anisotropic medium with parabolic dispersion[J], Appl. Phys. Lett., 2008, 92: 261905.

[22] Luo J, Xu P, Sun T, et al. Tunable beam splitting and negative refraction in heterostructure with metamaterial[J]. Appl. Phys. A, 2011, 104: 1137-1142.

[23] Luo J, Chen H, Hou B, et al. Nonlocality-induced negative refraction and subwavelength imaging by parabolic dispersions in metal-dielectric multilayered structures with effective zero permittivity[J]. Plasmonics, 2013, 8: 1095-1099.

[24] Orlov A A, Voroshilov P M, Belov P A, et al. Engineered optical nonlocality in nanostructured metamaterials[J]. Phys. Rev. B, 2011, 84: 045424.

[25] Pollard R, Murphy A, Hendren W, et al. Optical nonlocalities and additional waves in epsilon-near-zero metamaterials[J]. Phys. Rev. Lett., 2009, 102: 127405.

[26] Silveirinha M, Belov P. Spatial dispersion in lattices of split ring resonators with permeability near zero[J]. Phys. Rev. B, 2008, 77: 233104.

[27] Forati E, Hanson G W. On the epsilon near zero condition for spatially dispersive materials[J]. New J. Phys., 2013, 15: 123027.

[28] Kruk S S, Wong Z J, Pshenay-Severin E, et al. Magnetic hyperbolic optical metamaterials[J]. Nat. Commun., 2016, 7: 11329.

[29] Luo J, Yang Y, Yao Z, et al. Ultratransparent media and transformation optics with shifted spatial dispersions[J], Phys. Rev. Lett., 2016, 117: 223901.

[30] Maxwell Garnett J C. Colours in metal glasses and in metallic films[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1904, 203: 385-420.

[31] Cai W, Shalaev V. Optical metamaterials: Fundamentals and applications[M]. Springer, New York, USA, 2009.

[32] Luo J, Lu W, Hang Z, et al. Arbitrary control of electromagnetic flux in inhomogeneous anisotropic media with near-zero index[J]. Phys. Rev. Lett., 2014, 112: 073903.

[33] Luo J, Li J, Lai Y. Electromagnetic impurity-immunity induced by parity-time symmetry[J]. Phys. Rev. X, 2018, 8: 031035.

[34] Luo J, Liu B, Hang Z H, et al. Coherent perfect absorption via photonic doping of zero-index media[J]. Laser Photonics Rev., 2018, 2018: 1800001.

[35] Zhang Y, Jiang Y, Xue W, et al. A broad-angle polarization beam splitter based on a simple dielectric periodic structure[J]. Opt. Express, 2007, 15: 14363-14368.

[36] Ohtera Y, Sato T, Kawashima T, et al. Photonic crystal polarisation splitters[J]. Electron. Lett., 1999, 35: 1271-1272.

[37] Ao X, Liu L, Wosinski L, et al. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type[J]. Appl. Phys. Lett., 2006, 89: 171115.

[38] Mocella V, Dardano P, Moretti L, et al. A polarizing beam splitter using negative refraction of photonic crystals[J]. Opt. Express, 2005, 13: 7699-7707.

[39] Ao X, He S. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction[J]. Opt. Lett., 2005, 30: 2152-2154.

[40] Wu L, Mazilu M, Gallet J F, et al. Planar photonic crystal polarization splitter[J]. Opt. Lett., 2004, 29: 1620-1622.

[41] Solli D R, Hickmann J M. Photonic crystal based polarization control devices[J]. Journal of Physics D, 2004, 37: R263.

[42] Solli D R, McCormick C F, Chiao R Y, et al. Photonic crystal polarizers and polarizing beam splitters[J]. J. Appl. Phys., 2003, 93: 9429.

[43] Kim S, Nordin G P, Cai J, et al. Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure[J]. Opt. Lett., 2003, 28: 2384-2386.

[44] Zabelin V, Dunbar L A, Le Thomas N, et al. Self-collimating photonic crystal polarization beam splitter[J]. Opt. Lett., 2007, 32: 530-532.

[45] Bao Q, Zhang H, Wang B, et al. Broadband graphene polarizer[J]. Nat. Photonics, 2011, 5: 411-415.

[46] Chang K, Huang C. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide[J]. Sci. Rep., 2016, 6: 19609.

[47] Zhao J, Chen Y, Feng Y. Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure[J]. Appl. Phys. Lett., 2008, 92: 071114.

[48] Han C, Tam W Y. Plasmonic ultra-broadband polarizers based on Ag nano wire-slit arrays[J]. Appl. Phys. Lett., 2015, 106: 081102.

[49] Ma H F, Wang G Z, Jiang W X, et al. Independent control of differently-polarized waves using anisotropic gradient-index metamaterials[J]. Sci. Rep., 2014, 4: 6337.

[50] Ma H F, Wang G Z, Kong G S, et al. Independent controls of differently-polarized reflected waves by anisotropic metasurfaces[J]. Sci. Rep., 2015, 5: 9605.

[51] Li D, Qin L, Xiong X, et al. Exchange of electric and magnetic resonances in multilayered metal/dielectric nanoplates[J]. Opt. Express, 2011, 19: 22942.

[52] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340: 1304-1307.

[53] Fan R, Zhou Y, Ren X, et al. Freely tunable broadband polarization rotator for terahertz waves[J]. Adv. Mater., 2015, 27: 1201-1206.

[54] Fan R, Liu D, Peng R, et al. Broadband integrated polarization rotator using three-layer metallic grating structures[J]. Opt. Express, 2018, 26: 516.

[55] Jia Z, Shu F, Gao Y, et al. Dynamically switching the polarization state of light based on the phase transition of vanadium dioxide[J]. Phys. Rev. Applied, 2018, 9.

[56] Li Y, Zhang J, Yang B. Antireflective surfaces based on biomimetic nanopillared arrays[J]. Nano Today, 2010, 5: 117-127.

[57] Chen H T, O'Hara J F, Azad A K, et al. Manipulation of terahertz radiation using metamaterials[J]. Laser Photonics Rev., 2011, 5: 513-533.

[58] Luo J, Li S, Hou B, et al. Loss/gain-induced ultrathin antireflection coatings[J]. Sci. Rep., 2016, 6: 28681.

[59] Xiao S, Drachev V P, Kildishev A V, et al. Loss-free and active optical negative-index metamaterials[J]. Nature, 2010, 466: 735-738.

[60] Bai P, Ding K, Wang G, et al. Simultaneous realization of a coherent perfect absorber and laser by zero-index media with both gain and loss[J]. Phys. Rev. A, 2016, 94: 063841.

[61] Subramania G, Fischer A J, Luk T S. Optical properties of metal-dielectric based epsilon near zero metamaterials[J]. Appl. Phys. Lett., 2012, 101: 241107.

[62] Maas R, Parsons J, Engheta N, et al. Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths[J]. Nat. Photonics, 2013, 7: 907-912.

[63] Gao J, Sun L, Deng H, et al. Experimental realization of epsilon-near-zero metamaterial slabs with metal-dielectric multilayers[J]. Appl. Phys. Lett., 2013, 103: 051111.

[64] Newman W D, Cortes C L, Atkinson J, et al. Ferrell-Berreman modes in plasmonic epsilon-near-zero media[J]. ACS Photonics, 2015, 2: 2-7.

王敦建, 李肃成, 季文杰, 熊伟, 张磊, 商院芳, 罗杰. 金属-电介质复合材料中非局域效应诱导的偏振分光器[J]. 红外与毫米波学报, 2019, 38(4): 04445. WANG Dun-Jian, LI Su-Cheng, JI Wen-Jie, XIONG Wei, ZHANG Lei, SHANG Yuan-Fang, LUO Jie. Nonlocality-induced polarization beam splitting via metal-dielectric composites[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04445.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!