光子学报, 2016, 45 (7): 070706004, 网络出版: 2016-08-18  

基于调制相移法的高准确度光纤长度测量技术

High Precision Fiber Length Measurement Technique Based on Modulation Phase Shift Method
作者单位
中国电子科技集团公司第四十一研究所, 山东 青岛 26555
摘要
为了克服传统调制相移法测量频率范围窄、测量准确度低的缺点, 提出一种基于调制相移法的单模光纤长度精确测量技术.利用一体化矢量网络分析仪的高速调制信号同步技术及高频信号相位差测量技术, 设计并研制了单模光纤长度测量装置.基于矢量网络分析仪自带的VBA插件编写了自动控制及数据处理软件, 给出了相位变化量自动处理方法.利用研制的装置分别测量了长度为2 km、40 km和150 km的单模光纤在不同工作波长点的长度值, 实验结果表明, 2 km的光纤长度测量值实验标准偏差优于0.2 mm, 150 km的光纤长度测量值实验标准偏差接近0.01 m.该装置可对1 310 nm、1 490 nm以及1 550 nm波长的光纤距离进行精确测量, 为光纤长度的高准确度测量提供了一种新的技术途径.
Abstract
In order to overcome the defect of narrow frequency band and low accuracy exist in the traditional modulation phase shift method, a single mode fiber length measurement technique based on modulation phase shift method was proposed. The single mode fiber length measuring device was designed and developed using the high-speed modulation signal synchronization and high-frequency signal phase difference mearuring technology in the integrated vector network analyzer. An auto-control and data processing software based on VBA plug-in of vector network analyzer was complicated, then an automatic processing method of phase variation was illustrated. Single mode fibers with the length of 2 km, 40 km and 150 km weretested using the developeddevice at different wavelengths, the results show that the standard deviation of 2 km fiber length measuring value is better than 0.2 mm, and the standard deviation of 150 km fiber length measuring value is close to 0.01 m. The fiber distance can be precisionly measured by this device at 1 310 nm, 1 490 nm and 1 550 nm.The proposed device can be expected to provide a new technical approach for precisionly measuring of fiber length.
参考文献

[1] 汤沧海. 高性能光时域反射计技术研发[D]. 西安:西安电子科技大学, 2012.

    TANG Cang-hai. High-performance optical time domain reflectometertechnology research and development[D]. Xi′an: Xidian University, 2012.

[2] 叶蕾. 基于窄带光纤激光器的光频域反射计研究[J].光纤与电缆及其应用技术,2013,5:38-41.

    YE Lei. Optical frequency domain reflectometer based on narrow band fiber laser[J]. Optical Fiber & Electric Cable and Their Applications, 2013, 5: 38-41.

[3] 吕立冬.频分复用相干光时域反射系统研究[D].南京:南京大学, 2012.

    L Li-dong. Research on frequency division multiplexing probe based coherent optical time domain reflectometry[D]. Nanjing: Nanjing University, 2012.

[4] TERRAO, HUSSEIN H. Accurate fiber length measurement using Time-of-Flight technique[J]. Journal of Optical Communiccations, 2015, 11(4): 1-5.

[5] FERRIERE R, CUSSEY J, DUDLEYJ. Timeofflight range detection using low-frequency intensity modulation of a cw laser diode: application to fiber length measurement[J].Optical Engineering,2008, 47(9): 093602.

[6] GB/T 15972.22-2008.光纤试验方法规范-第22部分:尺寸参量的测量方法和实验程序-长度[S].2008.

    GB/T 15972. 22-2008. Specaifications for optical fibre methods-Part 22: Measurement methods and test procedures for dimensions length measurement[S]. 2008

[7] XIA H, ZHANG C. Ultrafast ranging lidar based on real time Fourierteansformation[J]. Optics Letter, 2009, 34(14): 2108-2110.

[8] LEE J, KIM Y J, LEE K, et al. Time-of-flight measurement with femtosecond light pulses[J].Nature Photonics, 2010, 4(10): 716-720.

[9] 贾豫东, 张晓青, 吕勇,等. 基于飞秒激光的光纤长度测试方法[J]. 北京信息科技大学学报,2013,28(2): 31-33.

    JIA Yu-dong, ZHANG Xiao-qing, L Yong, et al. Fiber length measurement based on femtosecond fiber lasers[J]. Journal of Beijing Information Science & Technology University, 2013, 28(2): 31-33

[10] 李楚瑞,王超, 肖倩. 基于全光纤干涉的新型光纤长度测量系统[J]. 仪器仪表学报,2011, 32(2): 415-418

    LI Chu-rui, WANG Chao, XIAO Qian. Novel fiber length measurement system based on fiber interferometer[J]. Chinese Journal of Scientific Instrument, 2011, 32(2): 415-418.

[11] 吴东方,张天照,董翔.基于微分环干涉技术的光纤长度测量系统[J].信息技术, 2010,7: 103-106.

    WU Dong-fang, ZHANG Tian-zhao, DONG Xiang. The differentiating-ring interferometer for measuring optic fiber length[J]. Information Technology, 2010, 7: 103-106.

[12] 叶全意, 杨春. 基于相位调制光链路的光纤长度测量系统[J]. 中国激光, 2013,40(5):0505003.

    YE Quan-yi, YANG Chun. Fiber length measurement system based on phase modulation optical link[J].Chinese Journal of Laser, 2013, 40(5): 0505003.

[13] 王云才, 张建国,徐航,等. 基于混沌信号的光时域反射仪[J]. 光学仪器, 2014,36(5):451-454.

    WANG Yun-cai, ZHANG Jian-guo, XU Hang, et al. Optical time domain reflectometer based on the chaotic signal[J]. Optical Instruments, 2014, 36(5): 451-454

[14] 王安帮,王云才.混沌激光相关法光时域反射测量技术[J].中国科学:信息科学,2010,40(3):512-518.

    WANG An-bang, WANG Yun-cai. OTDR measurement technologybased on correlation method with chaotic laser signal[J]. Scientia Sinica(Informationis), 2010, 40(3): 512-518.

[15] 赵同刚, 吴永刚,任建华, 等.线宽增长因子对光纤色散传输系统的影响[J].光通信研究, 2004,122(2):50-54.

    ZHAO Tong-gang, WU Yong-gang, REN Jian-hua, et al. Effects of linewidth broadening factor on optical fiber dispersion-supported transmission system[J]. Study on Optical Communications, 2004, 122(2): 50-54.

[16] 彭承柱.克服光纤色散影响的技术 [J].重庆邮电学院学报, 1999, 11(2): 12-16.

    PENG Cheng-zhu. The techniques of overcoming fiber dispersion effect[J].Journal of Chongqing Uniiversity of Posts and Telecommunications, 1999, 11(2): 12-16.

[17] 李学易,刘伟平,黄红斌, 等.光源线宽和色散对DWDM通信系统光纤光栅滤波器的码率限制[J].光子学报,2013,32(11):1355-1358.

    LI Xue-yi, LIU Wei-ping, HUANG Hong-bin, et al. Light source spectrum-induced and dispersion-induced bit-rate limitation of fiber Bragg-grating filter in DWDM communicationsustems[J]. Acta Photonica Sinica, 2013, 31(11): 1355-1358.

朱兴邦, 孙权社, 郑祥亮, 韩忠, 刘志明. 基于调制相移法的高准确度光纤长度测量技术[J]. 光子学报, 2016, 45(7): 070706004. ZHU Xing-bang, SUN Quan-she, ZHENG Xiang-liang, HAN Zhong, LIU Zhi-ming. High Precision Fiber Length Measurement Technique Based on Modulation Phase Shift Method[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070706004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!