量子电子学报, 2012, 29 (1): 45, 网络出版: 2012-01-16   

Er:GSGG晶体的光谱性质分析及激光特性模拟研究

Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crystal
黄荔 1,2,*郭强 1,2罗建乔 1,2王首长 1,2周健 1,2吴朝辉 1,2
作者单位
1 中国科学院安徽光学精密机械研究所激光技术与应用研究室,安徽 合肥 230031
2 安徽光子器件与材料省级实验室,安徽 合肥 230031
摘要
测试和分析了Er:GSGG的吸收光谱和荧光光谱。应用Judd-Ofelt理论计算了Er3+的强度参数、 自发辐射跃迁几率、能级寿命、荧光分支比和吸收截面。结果表明, Er3+在4I13/2和4I11/2能级有较长的 能级寿命,在966 nm和790 nm处有较大的吸收截面,在2.79 μm处有较大的积分发射截面值,数值模拟了在966 nm泵浦下激光输出特性, 在泵浦速率达到一定值时,有较高的量子效率。结果表明Er:GSGG有望成为2.79 μm波段的理想激光晶体。
Abstract
Absorption and fluorescence spectra of Er:GSGG crystal were measured and investigated. The oscillator strength, spontaneous emission probability, energy level lifetime, emission branching ratio and absorption cross-section of Er3+ transitions were calculated according to the Judd-Ofelt theory. It is found that the crystal has long lifetime at 4I13/2 and 4I11/2, large absorption cross-section at 965 nm and 790 nm, large stimulated emission cross-section at 2.79 μm. Laser output characteristics were simulated numerically with 965 nm pumping, where it has a large quantum efficiency when the pump rate reaches certain value. The results show that the crystal may be a suitable laser material at 2.79 μm wave band.
参考文献

[1] Stokowski S E, et al. Growth and characterization of large Nd, Cr:GSGG crystals for high-average-power slab lasers [J]. IEEE J. Quantum Electronics, 1988, 24(6): 934-948.

[2] Dinerman B J, Moulton P F. Up-conversion luminescence of Er3+ yttrium [C]. Proceedings of IEEE LEOS’92 Annual Meeting, 1992, 310-311.

[3] Zhang Qingli, Yin Shaotang. Research progress of the laser crystal GGG species [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2002, 19(6): 481-484 (in Chinese).

[4] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3): 750-761.

[5] Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3): 511-520.

[6] Carnall W T, Field P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquaions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ [J]. J. Chem. Phys., 1968, 49: 4424-4442.

[7] Weber M J. CRC Handbook of Laser Science and Technology VolI. Section1: Applications [M]. CRC Press, 1987.

[8] Sardar D K, Bradley W M, Perez J J, et al. Judd-Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+-doped garnets [J]. Journal of Applied Physics, 2003, 93(5): 2602-2607.

[9] Li C, Guyot Y, Linatès C, et al. Radiative transition probabilities of trivalent rare-earth ions in LiYF4 [C]. OSA Proceedings on Advnnced Solid-State Lasers, 1993, 15: 91-95.

[10] Kumar G A, Riman R, Chae S C, et al. Synthesis and spectroscopic characterization of CaF2:Er3+ single crystal for highly efficient 1.53 μm amplification [J]. Journal of Applied Physics, 2004, 95(7): 3243-3249.

[11] Serban Georgescu, Octavian Toma, Totia H. Intrinsic limits of the efficiency of erbium 3 μm lasers [J]. IEEE J. Quantum Electronics, 2003, 39(6): 722-732.

[12] Zhekov V I, Murina T M, Prokhorov A M, et al. Cooperative processes in Y3Al5O12:Er3+ crystal [J]. Kvantovaya Elektronika, 1986, 13(2): 419-422.

黄荔, 郭强, 罗建乔, 王首长, 周健, 吴朝辉. Er:GSGG晶体的光谱性质分析及激光特性模拟研究[J]. 量子电子学报, 2012, 29(1): 45. HUANG Li, GUO Qiang, LUO Jian-qiao, WANG Shou-zhang, ZHOU Jian, WU Zhao-hui. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crystal[J]. Chinese Journal of Quantum Electronics, 2012, 29(1): 45.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!