红外与激光工程, 2017, 46 (11): 1103003, 网络出版: 2017-12-26  

扫描近场圆偏振光学显微镜

Scanning near-field circular polarization optical microscope
作者单位
上海理工大学 光电信息与计算机工程学院 上海市现代化光学重点实验室, 上海 200093
摘要
提出一种利用镀有金属薄膜的V形无孔光学探针构建的扫描近场光学显微镜, 将圆偏振光注入镀有金属薄膜的V形槽内在针尖处形成近场照射光源, 并利用探针收集样品表面近场光信号。理论分析表明: 探针收集的近场和远场反射光之间存在一定的相位差, 该相位差与探针机械结构、探针与样品的距离有关, 可通过探针与样品之间的距离加以控制, 因此利用偏振性器件可有效抑制远场光强。实验中, 探针与样品之间的距离通过范德华力回馈控制, 探针操作在接触模式, 实验结果显示所测近场与远场光相位相差57°, 近场光学图像横向分辨率优于12 nm。
Abstract
A scanning near-field optical microscope (SNOM) based on an apertureless optical probe was presented. The probe had a V shape hollow on its top and coated with metal film. Illumination near-field light (NFL) will emit from the apex of probe when far-field light (FFL) is focused on the hollow. There is a phase difference between collected NFL and FFL, which relates to the distance between probe and sample. The collected FFL can be eliminated using a Glan-Taylor analyzer according to the phase difference. The experimental results show the phase difference of this system is 57°. The spatial resolution of SNCOM is less than 12 nm.
参考文献

[1] Shiroishi Y, Fukuda K, Tagawa I, et al. Future options for HDD storage[J]. Magnetics IEEE Transactions on, 2009, 45(10): 3816-3822.

[2] 洪涛, 王佳, 李达程. 近场光学在高密度存储中的应用[J]. 光学技术, 2011, 27(3): 255-259.

    Hong Tao, Wang Jia, Li Dacheng. The application of near-field optics in high density data storage[J]. Optical Technique, 2011, 27(3): 255-259. (in Chinese)

[3] Hosaka S, Aramomi Y, Sone H, et al. Nanometer resolution stress measurement of the Si gate using illumination-collection-type scanning near-field Raman spectroscopy with a completely metal-inside-coated pyramidal probe[J]. Nanotechnology, 2011, 22(2): 025206.

[4] Challener W A, Peng C, Itagi A V, et al. Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer[J]. Nature Photonics, 2009, 3(4): 190-191.

[5] Takayuki Umakoshi, Yuika Saito, Prabhat Verma. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy[J]. Nanoscale, 2016, 8(10): 5634-5640.

[6] Wu Xiaoyu, Sun Lin, Tan Qiaofeng, et al. A novel phase-sensitive scanning near-field optical microscope[J]. Chin Phys B, 2015, 24(5): 054204.

[7] Tomas Neuman, Pablo Alonso-Gonzalez, Aitzol Garcia-Etxarri, et al. Mapping the near fields of plasmonic nanoantennas byscattering-type scanning near-field optical microscopy[J]. Laser & Photonics Rev, 2015, 9(6): 1-13.

[8] Johnson T W, Lapin Z J, Beams R, et al. Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids[J]. Acs Nano, 2012, 6(10): 9168-9174.

[9] Aplan Bek. Apertureless SNOM: A new tool for nano-optics [D]. Bilkent: Bilkent University, 2004.

[10] Dereux A, Devaux E, Weeber J C, et al. Direct interpretation of near-field optical images[J]. Journal of Microscopy, 2011, 202(2): 320-331.

[11] 武清华, 王桂英, 徐至展. 入射光的偏振特性对反射式近场光学显微镜成像结果的影响[J]. 光学学报, 2003, 23(5):513-516.

    Wu Qinghua, Wang Guiying, Xu Zhizhan. Influence of polarization of the incident light on imaging of the RSNOM[J]. Acta Optica Sinica, 2003, 23(5): 513-516. (in Chinese)

金涛, 谢孟宇, 冀胡东, 吴丹丹, 郑继红. 扫描近场圆偏振光学显微镜[J]. 红外与激光工程, 2017, 46(11): 1103003. Jin Tao, Xie Mengyu, Ji Hudong, Wu Dandan, Zheng Jihong. Scanning near-field circular polarization optical microscope[J]. Infrared and Laser Engineering, 2017, 46(11): 1103003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!