光子学报, 2019, 48 (8): 0822001, 网络出版: 2019-11-28   

空间相机碳纤维复合材料主次镜连接筒设计

Structural Design of Carbon Fiber-reinforced Plastics Barrel for Space Remote Sensing Camera
作者单位
1 中国科学院西安光学精密机械研究所, 西安 710119
2 中国科学院大学, 北京 100049
摘要
设计并研制了碳纤维复合材料主次镜连接筒.根据光学设计中的公差分配, 结合复合材料层合板理论, 分析了复合材料铺层设计对面内刚度和轴向及周向热膨胀系数的影响, 确定了最终的铺层方式.利用有限元软件分析了重力作用下及温度变化时主次镜间的位置变化及连接筒的模态分布.最后, 完成了碳纤维复合材料薄壁连接筒的成型和精加工, 检测了主次镜系统光学性能, 并对装配完成后的相机进行了鉴定级力学试验.分析结果表明: 在1g重力载荷及2℃温升耦合作用下,次镜偏心小于0.002 mm, 次镜倾斜小于2″, 主次镜连接筒及次镜系统组合体基频达到265 Hz, 满足光学设计要求和结构稳定性要求.光学性能检测结果及力学试验结果表明, 主次镜系统波像差满足装配要求, 主次镜连接筒能够承受鉴定级力学试验考核, 连接主次镜的两端响应放大仅1.7倍, 体现了良好的阻尼性能.本文中研制的主次镜连接筒重量仅为6.4 kg, 实现了高轻量化和高刚度, 满足空间相机对主次镜位置精度和稳定性的要求.
Abstract
In this paper, a connecting barrel for space camera of Carbon Fiber-Reinforced Plastics (CFRP) is designed. Based on tolerance distribution in optics and composite lamination theory, the in-plane stiffness and thermal expansion coefficients due to lamination are analyzed, with structure optimized. Position error between primary and secondary mirrors, as well as modal distribution of the connecting barrel under gravity and temperature change are analyzed by finite element software. Finally, molding and fine tooling of the CFRP barrel is carried out, followed by optical inspection of the mirror system and appraisal mechanical test on the assembled camera. The analysis results show that the optical design and structural stability are satisfied by facts of 1) <0.002 mm eccentricity and <2″ tilt achieved on the secondary mirror under 1g gravity load and 2℃ temperature rise coupling; 2) 265 Hz fundamental frequency on the connecting barrel and on the secondary mirror combination system. Optical and mechanical performance tests show that the wavefront error of the primary and secondary mirror system meets the assembly requirements, and the barrel can bear the mechanical test of qualification level. The dual-terminal response of the barrel is amplified 1.7 times only, demonstrating desired damping property. The proposed barrel is merely 6.4 kg, which realizes light weight and high rigidity, thus satisfying the position accuracy and stability requirements on the primary and secondary mirrors for space cameras.
参考文献

[1] LINCOLN L, ENDELMAN. The hubble space telescope mission, history, and systems[C]. SPIE, 1990, 1358: 422-441.

[2] NEAM D C, GERBER J D. Structural design and analysis for an ultra low CTE optical bench for the hubble space telescope corrective optics[C]. SPIE, 1992, 1690: 273-286.

[3] JESSEN N C. The CFRP primary structure of the MIRI instrument onboard the james webb space telescope[C]. SPIE, 2004, 5495: 23-30.

[4] PLESSERIAJ Y, MAZY E, DEFISE J M, et al. Optical and mechanical design of a straylight rejection baffle for COROT[C]. SPIE, 2003, 5170: 167-176.

[5] LAMARDJ L, GAUDIN-DELRIEU C, VALENTINI D, et al. Design of the high resolution optical instrument for the PLEIADES HR earth observation satellites[C]. ICSO 2004: 149-156.

[6] 解永杰, 张禹康, 陈荣利, 等. 高分辨率相机的碳纤维复合材料主次镜连接筒设计[J]. 科学技术与工程, 2007, 7(9): 1863-1867.

    XIE Yong-jie, ZHANG Yu-kang, CHEN Rong-li,et al. Design of CFC cylinder joint structure between primary and second mirror in space high-resolution CCD camera[J]. Science Technology and Engineering, 2007, 7(9): 1863-1867.

[7] 许亮, 解永杰, 丁蛟腾, 等. 基于热稳定及弯曲刚度的碳纤维层合板铺层设计和优化[J]. 玻璃钢/复合材料, 2016(2): 57-62.

    XU liang, XIE Yong-jie, DING Jiao-teng,et al, The design and optimization of carbon fiber laminates based on thermal stability and bending rigidity[J]. Fiber Reinforced Plastic/Composites, 2016(2): 57-62.

[8] 李志来. 长焦距空间相机主次镜间桁架支撑结构设计[J]. 激光与红外, 2012, 42(1): 89-93.

    LI Zhi-lai. Truss support structure design between primary mirror and secondary mirror in long focal length space camera[J].Laser&Infrared, 2012, 42(1): 89-93.

[9] 郭疆, 邵明东, 王国良, 等. 空间遥感相机碳纤维机身结构设计[J]. 光学精密工程, 2012, 20(3): 571-578.

    GUO Jiang, SHAO Ming-dong, WANG Guo-liang,et al. Design of optical-mechanical structure made of CFC in space remote sensing camera[J]. Optics and Precision Engineering, 2012, 20(3): 571-578.

[10] 安源, 金光. 碳纤维复合材料在空间光学相机中的应用研究[J]. 材料导报 2012, 26(6): 1-4.

    AN Yuan, JIN Guang. Application ofcarbon fibre reinforced plastic for space optical camera[J]. Materials Reports, 2012, 26(6): 1-4.

[11] 林再文, 刘永琪, 梁岩, 等. 碳纤维增强复合材料在空间光学结构中的应用[J]. 光学精密工程, 2007, 15(8): 1181-1185.

    LIN Zai-wen, LIU Yong-qi, LIANG Yan,et al. Application of carbon fibre reinforced composite to space optical structure[J]. Optics and Precision Engineering, 2007, 15(8): 1181-1185.

[12] 陈荣利, 张禹康, 樊学武, 等. 空间高分辨率CCD相机次镜支架最佳结构设计[J]. 光子学报, 2004, 30(10): 1251-1254.

    CHEN Rong-li, ZHANG Yu-kang, FAN Xue-wu et al. Design of bracket structure for the second mirror of space high resolution CCD camera [J]. Acta Photonica Sinica, 2004, 30(10): 1251-1254.

[13] 王俊, 卢锷, 王家骐. 空间光学镜筒结构参数的探讨[J]. 光学精密工程, 1998, 6(6): 51-55.

    WANG Jun, LU E, WANG Jia-qi. An investigation scheme on structural parameters of a space optical tube[J]. Optics and Precision Engineering, 1998, 6(6): 51-55.

[14] 陈烈民, 无纵向温度变形的复合材料管的铺层设计[J]. 宇航材料工艺, 1999, 29(5): 20-22.

    CHEN Lie-min.Lay-up design for composite material tube having no longitudinal thermal deformation[J]. Aerospace Materials & Technology, 1999, 29(5): 20-22.

[15] 沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006.

[16] 李顺林, 王兴业. 复合材料结构设计基础[M]. 武汉: 武汉工业大学出版社, 1996.

[17] 陈绍杰. 复合材料设计手册[M]. 北京: 航空工业出版社, 1990.

[18] 沃西源. 国外先进复合材料发展及其在卫星结构中的应用[J] . 航天返回与遥感, 1994, 15(3): 53-62.

    WO Xi-yuan. Applications of advanced composite in foreign space structure[J] . Spacecraft Recovery & Remote Sensing, 1994, 15(3) : 53-62.

任国瑞, 李创, 王炜, 解永杰, 许亮, 王永杰, 樊学武. 空间相机碳纤维复合材料主次镜连接筒设计[J]. 光子学报, 2019, 48(8): 0822001. REN Guo-rui, LI Chuang, WANG Wei, XIE Yong-jie, XU Liang, WANG Yong-jie, FAN Xue-wu. Structural Design of Carbon Fiber-reinforced Plastics Barrel for Space Remote Sensing Camera[J]. ACTA PHOTONICA SINICA, 2019, 48(8): 0822001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!