激光与光电子学进展, 2018, 55 (8): 081006, 网络出版: 2018-08-13   

基于电磁理论的水下图像色彩补偿 下载: 573次

Underwater Image Color Compensation Based on Electromagnetic Theory
作者单位
长春理工大学电子信息工程学院, 吉林 长春 130022
摘要
在水下环境中,光波会因散射和被水吸收产生衰减,导致水下图像存在对比度低、图像模糊、颜色失真等问题。彩色图像传感器具有RGB基本颜色传感器,每个颜色传感器可检测不同波长的光信息。由于不同波长的光具有不同的传输系数,因此对水下图像进行复原时,需要考虑这些基本颜色光之间的差异。针对红色波段的光被水严重吸收导致图像R通道亮度衰减的问题,根据电磁波传输理论获得景物与摄像机间的距离,以及R通道因水吸收导致的衰减系数,求出R通道的传输系数。为了验证本文方法的可行性,通过主观评价和客观评价对实验获得的图像进行质量评估。结果表明,相比于传统算法,本文方法可以更有效地对图像色彩进行补偿和去模糊,其复原图像更真实。
Abstract
In underwater environments, light waves are attenuated by scattering and absorption, which cause problems such as low contrast, blurred underwater image, and color distortion. The color image sensor has three basic color sensors of RGB and each color sensor can detect light information of different wavelengths. Since different wavelengths of light have different transmission coefficients, the differences within these basic colors need to be considered to solve the above problems. Aiming at the problem that the brightness of R channel is decayed as the red band light is seriously absorbed by water, we propose a new method to obtain the distance between the scene and the camera and the attenuation factor of R channel due to water absorption based on electromagnetic wave theory, and ultimately get the transmission coefficient of R channel. In order to validate the feasibility of proposed method, the quality of experimental images is evaluated both by subjective and objective evaluation. The evaluation results show that compared with the traditional algorithm, the proposed method can compensate the image color and remove blur more effectively and make the restored image more realistic.
参考文献

[1] Mullen L J, Vieira A J C, Herezfeld P R, et al. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection[J]. IEEE Transactions on Microwave Theory & Techniques, 1995, 43(9): 2370-2377.

[2] 朱耘. 国外水下成像系统的发展[J]. 舰船电子工程, 1999(3): 60-64.

    Zhu Y. The development of underwater imaging system of foreign[J]. Ship Electronic Engineering, 1999(3): 60-64.

[3] Kocak D M, Dalgleish F R, Caimi F M, et al. A focus on recent developments and trends in underwater imaging[J]. Marine Technology Society Journal, 2008, 42(1): 52-67.

[4] 李黎, 王惠刚, 刘星. 基于改进暗原色先验和颜色校正的水下图像增强[J]. 光学学报, 2017, 37(12): 1211003.

    Li L,Wang H G,Liu X. Underwater image enhancement based on improved dark channel prior and color correction[J]. Acta Optica Sinica, 2017, 37(12): 1211003.

[5] He K, Sun J, Tang X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(12): 2341-2353.

[6] Li X, Yang Z, Shang M, et al. Underwater image enhancement via dark channel prior and luminance adjustment[C]. OCEANS, 2016: 1-5.

[7] 倪锦艳, 李庆武, 周亚琴,等. 基于透射率优化和色温调节的水下图像复原[J]. 激光与光电子学进展, 2017, 54(1): 011001.

    Ni J Y, Li Q W, Zhou Y Q, et al. Underwater image restoration based on transmittance optimization and color temperature adjustment[J]. Laser & Optoelectronics Progress, 2017, 54(1): 011001.

[8] Zhao X, Jin T, Qu S. Deriving inherent optical properties from background color and underwater image enhancement[J]. Ocean Engineering, 2015, 94: 163-172.

[9] Wen H, Tian Y, Huang T, et al. Single underwater image enhancement with a new optical model[C]. IEEE International Symposium on Circuits and Systems, 2013: 753-756.

[10] Balanis C A. Advanced engineering electromagnetics[M]. Hoboken: John Wiley & Sons, 1999.

[11] 胡思奇, 周田华, 陈卫标. 水下激光通信最大比合并分集接收性能分析及仿真[J]. 中国激光, 2016, 43(12): 1206003.

    Hu S Q, Zhou T H, Chen W B. Performance analysis and simulation of maximum ratio combining in underwater laser communication[J]. Chinese Journal of Lasers, 2016, 43(12): 1206003.

[12] Chiang J Y, Chen Y C. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756-1769.

蒋泽新, 朴燕. 基于电磁理论的水下图像色彩补偿[J]. 激光与光电子学进展, 2018, 55(8): 081006. Jiang Zexin, Piao Yan. Underwater Image Color Compensation Based on Electromagnetic Theory[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!