光学 精密工程, 2018, 26 (8): 1917, 网络出版: 2018-10-02   

注入锁定腔增强拉曼光谱微量气体检测技术

Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking
作者单位
1 重庆大学 输配电装备及系统安全与新技术国家重点实验室, 重庆 400044
2 国网浙江省电力有限公司, 浙江 杭州 310012
摘要
为了提高微量气体的拉曼散射强度, 本文设计并搭建了注入锁定腔增强拉曼光谱微量气体检测平台。半导体激光器(波长为638 nm, 功率为15 mW)输出到由三块高反镜组成的V型增强腔中, 结合注入锁定技术, 腔内激光强度达到7.5 W, 实现了500倍的增强效果。利用该实验平台对微量单一气体及其混合气体进行了拉曼检测, 并根据拉曼特征谱峰选取原则及信噪比大于3的原则, 确定了H2、CO、CO2、CH4、C2H6、C2H4、C2H2的特征拉曼谱峰分别为4 156, 2 143, 1 388, 2 918, 2 955, 1 344, 1 975 cm-1, 最小检测极限分别为10.2, 21.7, 9.4, 2.1, 8.9, 4.9, 3.3 Pa。腔增强拉曼光谱法可以实现微量同核双原子气体检测及利用单一波长激光的混合气体同时检测, 具有替代气体检测传统光谱方法的潜力。
Abstract
In order to improve the Raman scattering intensity of a trace gas, a cavity-enhanced Raman spectroscopy (CERS) technique with injection locking was introduced. A diode laser input (638 nm, 15 mW) was coupled into a V-shaped enhanced cavity composed of three highly reflective mirrors. Using the injection locking technique, an intracavity laser beam was generated and enhanced by a factor of 500 to obtain a power of 7.5 W. The Raman spectra of the individual trace gases and the mixture were obtained. According to the principle of Raman spectrum peak selection and a signal-to-noise ratio greater than 3, the characteristic Raman peaks of H2, CO, CO2, CH4, C2H6, C2H4, and C2H2 are determined as 4 156, 2 143, 1 388, 2 918, 2 955, 1 344, and 1 975 cm-1, respectively, and the limits of detection are determined as 10.2, 21.7, 9.4, 2.1, 8.9, 4.9, and 3.3 Pa. Trace homonuclear diatomic gases and mixed gases can thus be detected simultaneously using a single-wavelength diode laser and CERS. Therefore, CERS has the potential to become an alternative optical technology for gas detection.
参考文献

[1] CAMPBELL E K, HOLZ M, MAIER J P, et al.. Gas phase absorption spectroscopy of C+60 and C+70 in a cryogenic ion trap: comparison with astronomical measurements[J]. Astrophysical Journal, 2016, 822(1): 17.

[2] MICHELUCCI U, VENTURINI F. Novel semi-parametric algorithm for interference-immune tunable absorption spectroscopy gas sensing[J]. Sensors, 2017, 17(10): 2281.

[3] WOJTAS J, GLUSZEK A, HUDZIKOWSKI A, et al.. Mid-infrared trace gas sensor technology based on intracavity quartz-enhanced photoacoustic spectroscopy[J]. Sensors, 2017, 17(3): 513.

[4] WANG Q, WANG Z, CHANG J, et al.. Fiber-ring laser-based intracavity photoacoustic spectroscopy for trace gas sensing[J]. Optics Letters, 2017, 42(11): 2114.

[5] HECOBIAN A, YALIN A P, MCHALE L E. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air[J]. Optics Express, 2016, 24(5): 5523.

[6] CALL M, SCHULZ K G, CARVALHO M C, et al.. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC[J]. Biogeosciences, 2017, 14: 1-17.

[7] RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[8] MALARD L M, PIMENTA M A, DRESSELHAUS G, et al.. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5): 51-87.

[9] F. T F, KOENIG J L. Raman spectra of graphite[J]. Journal of Chemical Physics, 1970, 53(3): 1126-1130.

[10] KNIGHT D S, WHITE W B. Characterization of diamond films by Raman spectroscopy[J]. Journal of Materials Research, 1989, 4(2): 385-393.

[11] HUNGER D, STEINMETZ T, COLOMBE Y, et al.. Fiber Fabry-Perot cavity with high finesse[J]. New Journal of Physics, 2010, 12(6): 065038.

[12] LEY M, LOUDON R. Quantum theory of high-resolution length measurement with a Fabry-Perot interferometer[J]. Optica Acta International Journal of Optics, 1987, 34(2): 227-255.

[13] LANG R. Injection locking properties of a semiconductor laser[J]. IEEE J. Quantum Electron, 1982, 18(6): 976-983.

[14] KUROKAWA K. Injection locking of microwave solid-state oscillators[J]. Proc. IEEE, 1973, 61(10): 1386-1410.

[15] KIKUCHI K, OKOSHI T, TANIKOSHI S. Amplitude modulation of an injection-locked semiconductor laser for heterodyne-type optical communications[J]. Optics Letters, 1984, 9(3): 99-101.

王品一, 万福, 王建新, 陈伟根, 朱承治, 刘晔. 注入锁定腔增强拉曼光谱微量气体检测技术[J]. 光学 精密工程, 2018, 26(8): 1917. WANG Pin-yi, WAN Fu, WANG Jian-xin, CHEN Wei-gen, ZHU Cheng-zhi, LIU Ye. Trace gas detection using cavity-enhanced Raman spectroscopy with injection locking[J]. Optics and Precision Engineering, 2018, 26(8): 1917.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!