激光与光电子学进展, 2013, 50 (8): 080010, 网络出版: 2015-01-12   

高功率超连续谱光源研究进展与关键技术分析 下载: 1465次

Recent Developments and Key Technology Analysis of High Power Supercontinuum Source
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
随着特种光纤制造工艺与高亮度激光二极管抽运技术的发展,超连续谱输出平均功率得到快速提升,目前已超过百瓦。在简要介绍国内外高功率超连续谱光源研究概况的基础上,分析了高功率超连续谱光源的关键技术,介绍了**科学技术大学近几年在高功率超连续谱光源方面所做的相关工作:利用脉冲光纤激光器抽运国产光子晶体光纤取得平均功率为101 W的超连续谱输出;采用大模面积双包层光纤放大器直接输出超连续谱方案,得到177 W近红外超连续谱输出;利用2 μm脉冲光抽运ZBLAN光纤,获得10 W中红外超连续谱输出。
Abstract
With the development of special fiber fabrication technology and the pumping technology with high brightness laser diode, the average output power of supercontinuum source increases dramatically to hundred watt level in recent years. Based on the introduction of recent developments in high power supercontinuum fiber source, the key technologies of high power supercontinuum generation are analyzed. The up-to-date progress on high power supercontinuum fiber source in the National University of Defense Technology is presented: 101 W supercontinuum average output power is extracted from a homemade photonic crystal fiber by using a pulsed fiber laser as the pump; 177 W near-infrared supercontinuum power is obtained directly from a large-mode-area double-cladding fiber amplifier; 10 W mid-infrared supercontinuum is achieved from a ZBLAN fiber with a 2 μm pulse pump.
参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] Dudley John M, Taylor James Roy. Supercontinuum Generation in Optical Fibers[M]. Cambridge: Cambridge University Press, 2010.

[3] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000  via four-photon coupling in glass[J]. Phys Rev Lett, 1970, 24(11): 584-587.

[4] Alfano R R, Shapiro S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Phys Rev Lett, 1970, 24(11): 592-594.

[5] Lin Chinlon, Stolen R H. New nanosecond continuum for excited state spectroscopy[J]. Appl Phys Lett, 1976, 28(4): 216-218.

[6] Dudley John M, Genty Goёry, Coen Stéphane. Supercontinuum generation in photonic crystal fiber[J]. Rev Mod Phys, 2006, 78(4): 1135-1184.

[7] 赵卫, 胡晓鸿, 王屹山, 等. 高功率全光纤超连续谱激光技术进展[J]. 中国激光, 2011, 38(11): 1107002.

    Zhao Wei, Hu Xiaohong, Wang Yishan, et al.. The progress of high-power all-fiber supercontinuum technology[J]. Chinese J Lasers, 2011, 38(11): 1107002.

[8] 宋锐, 侯静, 陈胜平, 等. 177.6 W全光纤超连续谱光源[J]. 物理学报, 2012, 61(5): 054217.

    Song Rui, Hou Jing, Chen Shengping, et al.. All-fiber 177.6 W supercontinuum source[J]. Acta Physica Sinica, 2012, 61(5): 054217.

[9] Travers J C, Kennedy R E, Popov S V, et al.. Extended continuous-wave supercontinuum generation in a low-water-loss holey fiber[J]. Opt Lett, 2005, 30(15): 1938-1940.

[10] Champert P A, Popov S V, Taylor J R. Generation of multiwatt, broadband continua in holey fibers[J]. Opt Lett, 2002, 27(2): 122-124.

[11] Travers J C, Rulkov A B, Cumberland B A, et al.. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser[J]. Opt Express, 2008, 16(19): 14435-14447.

[12] Chen Kang Kang, Alam Shaif-Ul, Price Jonathan H, et al.. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power[J]. Opt Express, 2010, 18(6): 5426-5432.

[13] Guo Chunyu, Ruan Shuangchen, Yan Peiguang, et al.. Flat supercontinuum generation in cascaded fibers pumped by a continuous wave laser[J]. Opt Express, 2010,18(11): 11046-11051.

[14] 方晓惠, 王清月, 刘俊杰, 等. 3.95 W 高功率超连续光谱产生的实验研究[J]. 中国激光, 2010, 37(6): 1585-1588.

    Fang Xiaohui, Wang Qingyue, Liu Junjie, et al.. Experimental research on the 3.95 W high-power supercontinuum generation[J]. Chinese J Lasers, 2010, 37(6): 1585-1588.

[15] 李斌, 方晓惠, 刘博文, 等. 飞秒激光产生7.45 W超连续光谱实验[J]. 红外与激光工程, 2012, 41(8): 2012-2016.

    Li Bin, Fang Xiaohui, Liu Bowen, et al.. Research on 7.45 W supercontinuum generation by femtosecond laser[J]. Infrared and Laser Engineering, 2012, 41(8): 2012-2016.

[16] 葛廷武, 于峰, 张文启, 等. 国产全光纤结构超连续谱激光输出突破8 W[J]. 中国激光, 2011, 38(2): 0202003-6.

    Ge Tingwu, Yu Feng, Zhang Wenqi, et al.. Home|made all-fiber supercontinuum with average power above 8 W[J]. Chinese J Lasers, 2011, 38(2): 0202003-6.

[17] 郭春雨, 阮双琛, 陈祖聪, 等. 18.4 W 皮秒光纤激光器及其全光纤化超连续谱源[J]. 深圳大学学报: 理工版, 2011, 28(3): 218-224.

    Guo Chunyu, Ruan Shuangshen, Chen Zuchong, et al.. An all fiber supercontinuum source pumped with a 18.4 W picosecond fiber laser[J]. Journal of Shenzhen University Science and Engineering, 2011, 28(3): 218-224.

[18] Hu Xiaohong, Zhang Wei, Yang Zhi, et al.. High average power, strictly all-fiber supercontinuum source with good beam quality[J]. Opt Lett, 2011, 36(14): 2659-2661.

[19] Song Rui, Hou Jing, Chen Shengping, et al.. 157 W all-fiber high-power picosecond laser[J]. Appl Opt, 2012, 51(13): 2497-2500.

[20] Chen Sheng-Ping, Chen Hong-Wei, Hou Jing, et al.. 100 W all fiber picosecond MOPA laser[J]. Opt Express, 2009, 17(26): 24008-24012.

[21] Chen H W, Lei Y, Chen S P, et al.. High efficiency, high repetition rate, all-fiber picoseconds pulse MOPA source with 125 W output in 15 μm fiber core[J]. Appl Phys B, 2012, 109(2): 233-238.

[22] 林东风, 陈胜平, 侯静, 等. MOPA结构的超短脉冲光纤光源[J]. 光电子技术, 2008, 28(4): 277-282.

    Lin Dongfeng, Chen Shengping, Hou Jing, et al.. Ultra-short pulsed fiber laser in MOPA configuration[J]. Photoelectronics Technology, 2008, 28(4): 277-282.

[23] 谷庆元, 侯静, 程湘爱, 等. 利用半导体可饱和吸收镜实现的全光纤被动锁模激光器[J]. 中国激光, 2008, 5: 655-659.

    Gu Qingyuan, Hou Jing, Cheng Xiangai, et al.. All-fiber passive mode-locked laser realized by semiconductor saturable absorber mirror[J]. Chinese J Lasers, 2008, 5: 655-659.

[24] Rui Song, Hong-Wei Chen, Sheng-Ping Chen, et al.. A SESAM passively mode-locked fiber laser with a long cavity including a band pass filter[J]. J Optics, 2011,13(3): 035201.

[25] 陈河, 陈胜平, 侯静, 等. 超短脉冲增益开关半导体激光系统研究进展[J]. 激光与光电子学进展, 2012, 49(11): 111204.

    Chen He, Chen Shengping, Hou Jing, et al.. The research progress of ultrashort pulse gain-switching semiconductor laser system[J]. Laser & Optoelectronics Progress, 2012, 49(11): 111204.

[26] 杨未强, 张斌, 侯静, 等. 增益开关锁模2 μm铥/钬共掺光纤激光器[J]. 强激光与粒子束, 2012, 24(11): 2521-2522.

    Yang Weiqiang, Zhang Bin, Hou Jing, et al.. Gain-switched and mode-locked 2 μm Tm/Ho-codoped fiber laser[J]. High Power Laser and Particle Beams, 2012, 24(11): 2521-2522.

[27] 杨未强, 侯静, 张斌, 等. 2 μm波段半导体可饱和吸收镜被动调Q光纤激光器[J]. 强激光与粒子束, 2012, 24(7): 1515-1516.

    Yang Weiqiang, Zhang Bin, Hou Jing, et al.. A semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm[J]. High Power Laser and Particle Beams, 2012, 24(7): 1515-1516.

[28] Lei Y, Chen H W, Chen H, et al.. All-fiber picoseconds MOPA laser with a narrow spectrum output[J]. Laser Phys, 2012, 22(9): 1411-1414.

[29] Rui Song, Shengping Chen, Jing Hou, et al.. All-fiber pulsed laser with narrow line width[C] Proceedings of 2011 International Conference on the Electronics and Optoelectronics (ICEOE), 2011, 3: 116-119.

[30] Yang W Q, Zhang B, Hou J, et al.. Gain-switched and mode-locked Tm/Ho-codoped 2 μm fiber laser for mid-IR supercontinuum generation in a Tm-doped fiber amplifier[J]. Laser Phys Lett, 2013,10(4): 045106.

[31] 刘鹏祖. MOPA结构的1550 nm被动锁模光纤激光器研究[D]. 长沙: 国防科学技术大学, 2011.

    Liu Pengzu. Research of MOPA-Frame 1550 nm Passively Mode-Locked Fiber Laser[D]. Changsha: National University of Defense Technology, 2011.

[32] Yang Weiqiang, Hou Jing, Zhang Bin, et al.. Semiconductor saturable absorber mirror passively Q-switched fiber laser near 2 μm[J]. Appl Opt, 2012, 51(23): 5664-5667.

[33] 刘诗尧. 被动锁模光纤激光器及其色散管理[D]. 长沙: 国防科学技术大学, 2011.

    Liu Shiyao. Passively Mode-Locked Fiber Laser and Its Dispersion Management[D]. Changsha: National University of Defense Technology, 2011.

[34] 刘鹏祖, 侯静, 张斌, 等. 基于半导体可饱和吸收镜的1550 nm被动锁模光纤激光器[J]. 中国激光, 2011, 38(7): 0702017.

    Liu Pengzu, Hou Jing, Zhang Bin, et al.. Passively mode-locked fiber laser by SESAM at 1550 nm[J]. Chinese J Lasers, 2011, 38(7): 0702017.

[35] Chen Zilun, Hou Jing, Xi Xiaoming, et al.. Endlessly single-mode operation of highly nonlinear photonic crystal fibers by controlled hole collapse[J]. Opt Commun, 2010, 283(23): 4645-4648.

[36] Chen Z, Xiong C, Xiao L M, et al.. More than threefold expansion of highly nonlinear photonic crystal fiber cores for low-loss fusion splicing[J]. Opt Lett, 2009, 34(14): 2240-2242.

[37] 陈子伦, 侯静, 姜宗福. 光子晶体光纤的后处理技术[J]. 激光与光电子学进展, 2010, 47(2): 020602.

    Chen Zilun, Hou Jing, Jiang Zongfu. Post-processing techniques of photonic crystal fiber[J]. Laser & Optoelectronics Progress, 2010, 47(2): 020602.

[38] 奚小明, 孙桂林, 陈子伦, 等. 利用普通熔融拉锥机实现光子晶体光纤拉锥[J]. 红外与激光工程, 2012, 41(6): 1481-1484.

    Xi Xiaoming, Sun Guilin, Chen Zilun, et al.. The realization of taped photonic crystal fiber using ordinary fusing tapering rig[J]. Infrared and Laser Engineering, 2012, 41(6): 1481-1484.

[39] 奚小明, 陈子伦, 孙桂林, 等. 普通光纤与小芯径实芯光子晶体光纤的塌孔熔接技术[J]. 中国激光, 2011, 38(1): 0106004.

    Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. The hole-collapse splicing technology between ordinary fiber and solid-core photonic crystal fiber with a small core diameter[J]. Chinese J Lasers, 2011, 38(1): 0106004.

[40] 孙桂林, 陈子伦, 奚小明, 等. 光子晶体光纤的全光纤纤芯变形研究[J]. 物理学报, 2011, 60(8): 084220.

    Sun Guilin, Chen Zilun, Xi Xiaoming, et al.. Research on all-fiber deformation of the PCF core[J]. Acta Physica Sinica, 2011, 60(8): 084220.

[41] 孙桂林. 光子晶体光纤选择性空气孔塌缩技术研究[D]. 长沙: 国防科学技术大学, 2010.

    Sun Guilin. Studies on Controlled Air Hole Collapse in Photonic Crystal Fiber[D]. Changsha: National University of Defense Technology, 2010.

[42] Haihuan Chen, Zilun Chen, Xuanfeng Zhou, et al.. Cascaded PCF tapers for flat broadband supercontinuum generation[J]. Chin Opt Lett, 2012, 10(12): 120603.

[43] Huang Zhi-he, Hou Jing, Peng Yang, et al.. Surface plasmon resonance sensor based on supercontinuum source[C]. SPIE, 2011, 8191: 81910Z.

[44] 张杨, 彭杨, 侯静, 等. 混合溶液折射率对局域表面等离子体共振的影响[J]. 强激光与粒子束, 2013, 25(2): 500-504.

    Zhang Yang, Peng Yang, Hou Jing, et al.. Effects of refractive index of mixed solution on localized surface plasmon resonance[J]. High Power Laser and Particle Beams, 2013, 25(2): 500-504.

[45] Yang Peng, Jing Hou, Qisheng Lu. Simulation of a surface plasmon resonance based on photonic crystal fiber temperature sensor[C]. Proceedings of the Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 2011, 1: 274-277.

[46] Aijun Jin, Zefeng Wang, Jing Hou, et al.. Experimental measurement and numerical calculation of dispersion of ZBLAN fiber[C]. Proceedings of 2011 International Conference on, the Electronics and Optoelectronics (ICEOE), 2011, 3: 181-184.

[47] 刘小明. 光子晶体光纤色散特性的理论和实验研究[D]. 长沙: 国防科学技术大学, 2009.

    Liu Xiaoming. Theoretical and Experimental Research of the Dispersion Character of Photonic Crystal Fiber[D]. Changsha: National University of Defense Technology, 2009.

[48] 王泽锋, 刘小明, 侯静. 基于超连续谱白光干涉仪的宽波段光子晶体光纤色散测量[J]. 中国激光, 2010, 37(6): 1496-1500.

    Wang Zefeng, Liu Xiaoming, Hou Jing. Broadband dispersion measurement of photonic crystal fiber based on supercontinuum white light interferometer[J]. Chinese J Lasers, 2010, 37(6): 1496-1500.

[49] 靳爱军. 超连续谱光源相干特性研究[D]. 长沙: 国防科学技术大学, 2011.

    Jin Aijun. Research on the Coherence Properties of Supercontinuum Source[D]. Changsha: National University of Defense Technology, 2011.

[50] 靳爱军, 王泽锋, 侯静, 等. 复自相干度度量超连续谱相干性[J]. 物理学报, 2012, 61(15): 154201.

    Jin Aijun, Wang Zefeng, Hou Jing, et al.. Coherence properties of supercontinuum quantified by complex degree of self-coherence[J]. Acta Physica Sinica, 2012, 61(15): 154201.

[51] 李荧, 侯静, 王彦斌, 等. 高相干度超连续谱产生的理论研究[J]. 物理学报, 2012, 61(9): 094212.

    Li Ying, Hou Jing, Wang Yanbin, et al.. Theoretical research on the generation of coherent supercontinuum[J]. Acta Physica Sinica, 2012, 61(9): 094212.

[52] 王彦斌, 熊春乐, 侯静, 等. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究[J]. 物理学报, 2011, 60(1): 014201.

    Wang Yanbin, Xiong Chunle, Hou Jing, et al.. Modeling of four-wave mixing and supercontinuum with long pulses in photonic crystal fibers[J]. Acta Physica Sinica, 2011, 60(1): 014201.

[53] Wang Yanbin, Xiong Chunle, Hou Jing, et al.. Continuous wave, dual-wavelength-pumped supercontinuum generation in an all-fiber device[J]. Appl Opt, 2011,50(17): 2752-2758.

[54] Wang Y, Hou J, Xiong C, et al.. Improved dual-wavelength-pumped supercontinuum generation in an all-fiber device[C]. SPIE, 2010, 7987: 79870Z.

[55] 奚小明, 陈子伦, 孙桂林, 等. 双波长抽运拉锥光子晶体光纤产生超连续谱研究[J]. 光学学报, 2011, 31(2): 0206001.

    Xi Xiaoming, Chen Zilun, Sun Guilin, et al.. Supercontinuum generation in a tapered photonic crystal fiber pumped by two wavelength[J]. Acta Optica Sinica, 2011, 31(2): 0206001.

[56] 陈胜平, 王建华, 谌鸿伟, 等. 35.6 W高功率高效率全光纤超连续谱光源[J]. 中国激光, 2010, 37(12): 3018.

    Chen Shengping, Wang Jianhua, Chen Hongwei, et al.. 35.6 W high-power all-fiber supercontinuum[J]. Chinese J Lasers, 2010, 37(12): 3018.

[57] Wei H F, Chen H W, Chen S P, et al.. A compact seven-core photonic crystal fiber supercontinuum source with 42.3 W output power[J]. Laser Phys Lett, 2013,10(4): 045101.

[58] 谌鸿伟, 陈胜平, 刘通, 等. 多芯光子晶体光纤高功率超连续谱光源[J]. 强激光与粒子束, 2013, 25(5): 1073-1074.

    Chen Hongwei, Chen Shengping, Liu Tong, et al.. High power supercontinuum source based on multi-core photonic crystal fiber[J]. High Power Laser and Particle Beams, 2013, 25(5): 1073-1074.

[59] 张斌, 侯静, 姜宗福. 材料色散对全固态带隙光纤带内色散的影响[J]. 国防科技大学学报, 2011, 33(2): 5-8.

    Zhang Bin, Hou Jing, Jiang Zongfu. Effects of material dispersion on dispersion in bandgaps of all-solid photonic bandgap fibers[J]. J National University of Defense Technology, 2011, 33(2): 5-8.

[60] 张斌, 侯静, 姜宗福. 全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出[J]. 光学学报, 2010, 30(9): 2513-2518.

    Zhang Bin, Hou Jing, Jiang Zongfu. Controllable high-power supercontinuum generation in all-solid photonic bandgap fibers[J]. Acta Optica Sinica, 2010, 30(9): 2513-2518.

[61] Zhou Hang, Chen Zilun, Li Jie, et al.. The effect of PCF combiners on the whole loss under different lengths of transition zone[C]. SPIE, 2011, 81911: 81911Y.

[62] 梁冬明. 超连续谱合束器研究[D]. 长沙: 国防科学技术大学, 2009.

    Liang Dongming. Optical Fiber Combiner for Supercontinuum[D]. Changsha: National University of Defense Technology, 2009.

[63] Zhang B, Hou J, Liu P Z, et al.. Flat supercontinuum generation covering C-band to U-band in two-stage Er/Yb co-doped double-clad fiber amplifier[J]. Laser Phys, 2011, 21(11): 1895-1898.

[64] 宋锐, 陈胜平, 侯静, 等. 70 W全光纤超连续谱光源[J]. 强激光与粒子束, 2011, 23(3): 569-570.

    Song Rui, Chen Shengping, Hou Jing, et al.. All-fiber 70 W supercontinuum[J]. High Power Laser and Particle Beams, 2011, 23(3): 569-570.

[65] Song Rui, Hou Jing, Chen Shengping, et al.. High power supercontinuum generation in a nonlinear ytterbium-doped fiber amplifier[J]. Opt Lett, 2012, 37(9): 1529-1531.

[66] Song R, Hou J, Chen S P, et al.. Near-infrared supercontinuum generation in an all-normal dispersion MOPA configuration above one hundred watts[J]. Laser Phys Lett, 2013, 10(1): 015401.

[67] 张斌, 杨未强, 侯静, 等. 国内首次实现1.9~4.3 μm全光纤中红外超连续谱光源[J]. 中国激光, 2012, 39(12): 1202001-4.

    Zhang Bin, Yang Weiqiang, Hou Jing, et al.. The first domestic realization of all-fiber mid-infrared supercontinuum in 1.9~4.3 μm region[J]. Chinese J Lasers, 2012, 39(12): 1202001-4.

[68] Yang W Q, Zhang B, Hou J, et al.. Mid-IR supercontinuum generation in Tm/Ho codoped fiber amplifier[J]. Laser Phys Lett, 2013,10(5): 055107.

[69] 张斌, 侯静, 姜宗福. 碲化物微结构光纤应用于中红外超连续谱的产生[J]. 红外与激光工程, 2011, 40(2): 328-331.

    Zhang Bin, Hou Jing, Jiang Zongfu. Tellurite glass microstructured fibers for mid-IR supercontinuum generation[J]. Infrared and Laser Engineering, 2011, 40(2): 328-331.

[70] 张斌, 侯静, 姜宗福. 非石英玻璃光纤中产生中红外超连续谱研究进展[J]. 激光与红外, 2010, 40(6): 575-579.

    Zhang Bin, Hou Jing, Jiang Zongfu. Research progress on mid-infrared supercontinuum generation in nonsilica glass fibers[J]. Laser & Infrared, 2010, 40(6): 575-579.

侯静, 陈胜平, 陈子伦, 王泽锋, 张斌, 宋锐. 高功率超连续谱光源研究进展与关键技术分析[J]. 激光与光电子学进展, 2013, 50(8): 080010. Hou Jing, Chen Shengping, Chen Zilun, Wang Zefeng, Zhang Bin, Song Rui. Recent Developments and Key Technology Analysis of High Power Supercontinuum Source[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080010.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!