光电工程, 2019, 46 (3): 1, 网络出版: 2019-04-07  

超分辨光存储研究进展

Research progress of super-resolution optical data storage
作者单位
暨南大学光子技术研究院,广东省光纤传感与通信技术重点实验室,广东 广州 510632
摘要
随着大数据和人工智能等信息技术日新月异,各行各业对数据信息存储的要求与日俱增。当前,以磁控存储技术为主的信息存储方式普遍存在寿命低、能耗高的缺点。与磁存储技术相比,光学数据存储技术具有能耗低、数据安全性高等优势,然而其数据存储容量受到光学衍射极限的极大制约。如何突破光学衍射极限,提升光存储技术光学系统的分辨能力,从而增加光学存储系统数据存储容量,是目前光存储技术进一步与大数据和云计算等信息技术融合的关键。本文阐述了基于超衍射极限分辨率的光学存储技术的原理和国内外发展现状,包括远场超分辨的三维光存储(如基于双光子吸收过程和饱和受激发射损耗荧光过程光数据存储)和近场超分辨二维光存储(如近场探针扫描显微存储、近场固体浸没透镜存储和超分辨近场结构存储)。最后,对基于超分辨光学存储技术当前存在的问题及未来发展方向进行了讨论。
Abstract
With the rapid development of Big Data and artificial intelligence, emerging information technology compels dramatically increasing demands on data information storage. At present, conventional magnetization-based information storage methods generally suffer from technique challenges raised by short lifetime and high energy consumption. Optical data storage technology, in comparison, is well known for its advantages of low energy consumption and high security. However, the disc capacity of optical data storage technology inevitably gets stuck in the physical fundamental barrier-optical diffraction limit. How to break optical diffraction barrier and improve the resolution of optical storage system, thereby increasing the data storage capacity of the optical storage system is the key to incorporating optical storage technology with information technology trend such as big data and cloud computing. In this review, we present the principle of optical storage techniques beyond diffraction-limited and recent progress in high capacity optical data storage, including far field super-resolution three dimensional optical (3D) storage techniques (such as two-photon absorption-based process and saturation stimulated emission depletion fluorescence-inspired approaches) and near field super-resolution two dimensional (2D) optical storage techniques (such as near field scanning probe methods, solid immersion lens approaches, and super-resolution near-field structure methods). Eventually, the here-and-now problems confronted by the super-resolution optical data storage and future development of optical storage technology towards ultra-high capacity optical disc based on optical super-resolution techniques are discussed.
参考文献

[1] Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 2010, 21(7): 28–33.

[2] Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 1991, 16(22):1780.

[3] Day D, Gu M, Smallridge A. Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer[J]. Optics Letters, 1999, 24(14): 948–950.

[4] Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 1998, 23(10): 756–758.

[5] Day D, Gu M. Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer[J]. Applied Optics, 1998, 37(26): 6299–6304.

[6] Li X P, Cao Y Y, Gu M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510–2512.

[7] Shalaev V M. Optical negative-index metamaterials[J]. Nature Photonics, 2007(1): 41–48.

[8] Chen J B, Wang Y, Jia B H, et al. Observation of the inverse Doppler effect in negative-index materials at optical frequencies[J]. Nature Photonics, 2011, 5(4): 239–245.

[9] Chow E, Lin S Y, Johnson S G, et al. Three-dimensional control of light in a two-dimensional photonic crystal slab[J]. Nature, 2000, 407(6807): 983–986.

[10] Almeida V R, Barrios C A, Panepucci R R, et al. All-optical control of light on a silicon chip[J]. Nature, 2004, 431(7012): 1081–1084.

[11] Noda S, Fujita M, Asano T. Spontaneous-emission control by photonic crystals and nanocavities[J]. Nature Photonics, 2007, 1(8): 449–458.

[12] Li J, Jia B, Zhou G, et al. Spectral redistribution in spontaneous emission from quantum‐dot‐infiltrated 3D woodpile photonic crystals for telecommunications[J]. Advanced Materials, 2010, 19(20): 3276–3280.

[13] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2015, 3(3): 144–147.

[14] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2010, 3(10): 793–795.

[15] Gu M, Cao Y Y, Castelletto S, et al. Super-resolving single nitrogen vacancy centers within single nanodiamonds using a localization microscope[J]. Optics Express, 2013, 21(15): 17639–17646.

[16] Fischer J, von Freymann G, Wegener M. The materials challenge in diffraction-unlimited direct-laser-writing optical litho graphy[J]. Advanced Materials, 2010, 22(32): 3578–3582.

[17] Li L J, Gattass R R, Gershgoren E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910–913.

[18] Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843–845.

[19] Betzig E, Trautman J K, Wolfe R, et al. Near–field magneto‐optics and high density data storage[J]. Applied Physics Letters, 1992, 61(2): 142–144.

[20] Terris B D, Mamin H J, Rugar D, et al. Near–field optical data storage using a solid immersion lens[J]. Applied Physics Letters, 1994, 65(4): 388–390.

[21] Tominaga J, Nakano T, Atoda N. An approach for recording and readout beyond the diffraction limit with an Sb thin film[J]. Applied Physics Letters, 1998, 73(15): 2078–2080.

[22] Grotjohann T, Testa I, Leutenegger M, et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP[J]. Nature, 2011, 478(7368): 204–208.

[23] Toriumi A, Kawata S, Gu M. Reflection confocal microscope readout system for three-dimensional photochromic optical data storage[J]. Optics Letters, 1998, 23(24): 1924–1926.

[24] Hosaka S, Shintani T, Miyamoto M, et al. Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode[J]. Japanese Journal of Applied Physics, 1996, 35(1B): 443–447.

[25] Huang D R, Chao Z W, Wu G Z, et al. Near-field recording head with simple tracking design[J]. Japanese Journal of Applied Physics, 1999, 38(3B): 1774–1776.

[26] Fuji H, Tominaga J, Men L Q, et al. A near-field recording and readout technology using a metallic probe in an optical disk[J]. Japanese Journal of Applied Physics, 2000, 39(2B): 980–981.

[27] Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

[28] Boyd R W. Nonlinear optics-handbook of laser technology and applications[M]. Philadelphia: Taylor & Francis, 2003: 161.

[29] Pudavar H E, Joshi M P, Prasad P N, et al. High-density three-dimensional optical data storage in a stacked compact disk format with two-photon writing and single photon readout[J]. Applied Physics Letters, 1999, 74(9): 1338–1340.

[30] Zhou Y J, Tang H H, Zhuang W H, et al. Three-dimensional optical data storage in a novel photochromic material with two-photon writing and one-photon readout[J]. Optical Engineering, 2005, 44(3): 035202.

[31] Cai J W, Huang W H. Three-dimensional information storage of polymer doped with nano-silver[J]. Microwave and Optical Technology Letters, 2015, 57(11): 2662–2665.

[32] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780–782.

[33] 曹耀宇, 谢飞, 张鹏达, 等. 双光束超分辨激光直写纳米加工技术[J]. 光电工程, 2017, 44(12): 1133–1145.

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133–1145.

[34] Scott T F, Kowalski B A, Sullivan A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913–917.

[35] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

[36] Wollhofen R, Buchegger B, Eder C, et al. Functional photoresists for sub-diffraction stimulated emission depletion lithography[J]. Optical Materials Express, 2017, 7(7): 2538–2559.

[37] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177.

[38] 李鑫, 潘石, 邢立伟. 超高密度光存储技术的进展[J]. 电子显微学报, 2007, 26(1): 78–83.

    Li X, Pan S, Xing L W. Development of ultra-high density optical storage technology[J]. Journal of Chinese Electron Microscopy Society, 2007, 26(1): 78–83.

[39] Partovi A, Peale D, Wuttig M, et al. High-power laser light source for near-field optics and its application to high-density optical data storage[J]. Applied Physics Letters, 1999, 75(11): 1515–1517.

[40] Gorecki C, Khalfallah S, Kawakatsu H, et al. New SNOM sensor using optical feedback in a VCSEL-based compound-cavity[J]. Sensors and Actuators A: Physical, 2001, 87(3): 113–123.

[41] Sharma P, Zhang Q, Sando D, et al. Nonvolatile ferroelectric domain wall memory[J]. Science Advances, 2017, 3(6): e1700512.

[42] Terris B D, Mamin H J, Rugar D. Near‐field optical data storage[J]. Applied Physics Letters, 1996, 68(2): 141–143.

[43] Shinoda M, Saito K, Kondo T, et al. High-density near-field readout using a diamond solid immersion lens[J]. Japanese Journal of Applied Physics, 2006, 45(2B): 1311–1313.

[44] Fan W, Yan B, Wang Z D, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8): e1600901.

[45] Nakai K, Ohmaki M, Takeshita N, et al. Bit-error-rate evaluation of super-resolution near-field structure read-only memory discs with semiconductive material InSb[J]. Japanese Journal of Applied Physics, 2010, 49(8S2): 08KE01.

[46] Tominaga J, Kim J, Fuji H, et al. Super-resolution near-field structure and signal enhancement by surface plasmons[J]. Japanese Journal of Applied Physics, 2001, 40(3B): 1831–1834.

[47] Fu Y H, Ho F H, Hsu W C, et al. Nonlinear optical properties of the Au-SiO2 nanocomposite superresolution near-field thin film[J]. Japanese Journal of Applied Physics, 2004, 43(7B): 5020–5023.

[48] 赵石磊, 耿永友, 施宏仁. Si掺杂Ag基超分辨薄膜读出性能研究[J]. 光学学报, 2012, 32(6): 297–302.

    Zhao S L, Geng Y Y, Shi H R. Study on super-resolution readout performance of Si-Doped Ag film[J]. Acta Optica Sinica, 2012, 32(6): 297–302.

[49] Zhang K, Geng Y Y, Wang Y, et al. Progress of super-resolution near-field structure and its application in optical data storage[J]. Frontiers of Optoelectronics, 2014, 7(4): 475–485.

[50] 秦飞, 李向平, 洪明辉. 从超振荡透镜到超临界透镜: 超越衍射极限的光场调制[J]. 光电工程, 2017, 44(8): 757–771.

    Qin F, Li X P, Hong M H. From super-oscillatory lens to super-critical lens: surpassing the diffraction limit via light field modulation[J]. Opto-Electronic Engineering, 2017, 44(8): 757–771.

姜美玲, 张明偲, 李向平, 曹耀宇. 超分辨光存储研究进展[J]. 光电工程, 2019, 46(3): 1. Jiang Meiling, Zhang Mingsi, Li Xiangping, Cao Yaoyu. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!