大气与环境光学学报, 2019, 14 (6): 442, 网络出版: 2019-12-05   

基于AIRS卫星的全球和东亚地区CO2时空特征分析

Spatial-Temporal Distribution Characteristics of CO2 over Globe and East Asia by AIRS Satellite
张绍会 1,2,*谢冰 1,3张华 1,2周喜讯 2
作者单位
1 南京信息工程大学气象灾害预报预警与评估协同创新中心,江苏 南京 210044
2 中国气象科学研究院灾害天气国家重点实验室,北京 100081
3 中国气象局气候研究开放实验室,中国气象局国家气候中心,北京 100081
摘要
利用2002年12月到2016年11月的大气红外探测仪(Atmospheric infrared sounder, AIRS)卫星观测资料,分析了全球 和东亚地区(70~140°E, 10~55°N)CO2浓度的时空变化和季节分布特征,并与地面观测 资料进行了对比。结果表明: 1) AIRS反演的CO2资料与地表观测资料相关系数均在0.9以上,且年均值相对误差均 在1%以内。2)全球CO2年平均浓度从2003年的375.16 ml/m3增加到2016年的401.24 ml/m3, 年平均增长率约2.01 ml/m3;同期,东亚地区CO2平均浓度从2003年的375.13 ml/m3增加 到2016年的402.22 ml/m3,年增长率约为2.08 ml/m3,高于全球的年平均增长率。 在2010~2016年,北半球大部分地区CO2浓度增长率低于2003~2009年的增长率。CO2增幅较明显 的区域位于北半球高纬度地区如中西伯利亚和格陵兰岛等地上空。3)CO2分布存在明显的区域性,高值区主要位于 北半球的中高纬度地区;低值区主要位于青藏高原上空。在南半球,CO2浓度的高值区主要位于南美洲中纬度地区; 低值区主要出现在低纬度(0~20°S, 50°W~5°E)的大西洋上空。在对流层中低层(4~6 km), AIRS反演的CO2浓度的季节变化特征准确性较高,特别在冬季,北半球大部分地区的CO2浓度随着时间 变化呈现先减小后增加的趋势。4)在东亚地区,CO2高值区位于中国北方地区,呈带状分布。
Abstract
Based on atmospheric infrared sounder (AIRS ) satellite data from December 2002 to November 2016, the spatial-temporal characteristics of CO2 concentration in different seasons over globe and East Asia (70~140°E, 10~55°N) were analyzed and compared with the surface observation data. The results show that: 1) the correlation coefficient between the CO2 data of AIRS and the surface observation data is above 0.9, and the relative error of annual mean value is within 1%. 2) The global annual mean CO2 concentration increased from 357.16 ml/m3 in 2003 to 401.24 ml/m3 in 2016, with an average annual growth date of about 2.01 ml/m3. While it increased from 357.13 ml/m3 to 402.22 ml/m3 during the same period over East Asia, with an average annual growth rate of about 2.08 ml/m3 which is a bit higher than that of globe. Over most of the Northern Hemisphere, the CO2 concentration growth rate during 2010~2016 is lower than that of during 2003~2009. In particular, mean CO2 concentration increased markedly over central Siberia and Greenland. 3) The distributions of CO2 concentrations had obviously regional features. The regions with high CO2 concentration were over middle and high latitudes in the Northern Hemisphere, whereas the regions wtih low CO2 concentration were mainly located over Tibet Plateau. In the Southern Hemisphere, the regions with high concentration was located in the middle latitudes, while the region with low concentration was located in the low latitudes of Atlantic (0~20°S, 50°W~5°E). In the middle and lower troposphere (4~6 km), the seasonal variation characteristics of CO2 concentration retrieved by AIRS was highly reliable. Especially in winter, over most of the Northern Hemisphere, CO2 concentration decreased first and then increased with time. 4) In East Asia, the high CO2 concentration was located in the Northern China with zonal distribution.
参考文献

[1] Root T L, Price J T, Hall K R,et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918), 57-60.

[2] Zhang H, Zhang R Y, Shi Guangyu. The updated radiative forcing due to CO2 and its effect on global surface temperature change[J]. Advances in Atmospheric Sciences., 2013, 30(4), 1017-1024.

[3] 张 华, 陈 琪, 谢冰等.中国的PM2.5和对流层臭氧及污染物排放控制对策的综合分析[J].气候变化研究进展, 2014, 10(4), 289-296.

    Zhang Hua, Xie Bing, Chen Qi,et al. PM2.5 and tropospheric ozone in China and pollutant emission controlling integrated analyses[J]. Progressus Inquisitiones D Mutatione Climatis. 2014, 10(4), 289-296(in Chinese).

[4] Zhang H, Xie B, Chen Q,et al. PM2.5 and tropospheric ozone in China and pollutant emission controlling integrated analyses[J]. Advance in Climate Change Research. 2014, 5(3): 136-141.

[5] Sjgersten S, Black CR, Evers S,et al. Tropical wetlands: a missing link in the global carbon cycle?[J], Global biogeochemical cycles, 2015, 28(12), 1371-1386.

[6] Callendar G S. The artificial production of carbon dioxide and its influence on temperature[J].Quarterly Journal of the Royal Meteorological Society, 1938, 64(275), 223-240.

[7] Bacastow R B. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO2[J]. Global Biogeochemical Cycles, 1996, 10(2), 319-333.

[8] IPCC.Climate change 2013: the physical science basis[M]. Cambridge:Cambridge University Press, 2013.

[9] Cooper M D A, Estoparagonés C, Fisher J P,et al. Limited contribution of permafrost carbon to methane release from thawing peatlands[J]. Nature Climate Change, 2017, 7(7).

[10] 叶 红, 黎慧娟. 城市土壤碳循环特征研究进展[J].生态环境学报, 2009, 18(3): 1134-1138.

    Ye Hong, Li Huijuan. Progress in research on urban soil carbon cycle[J].Ecologt and Environment, 2009, 18(3), 1134-1138(in Chinese).

[11] Le Quéré C, Raupach M R, Canadell J G,et al. Trends in the sources and sinks of carbon dioxide[J]. Nature geoscience, 2009. 2(12): 831.

[12] World Metrological Association.The state of greenhouse gases in the atmosphere based on global observations through 2016[M]. Geneva:WMO Greenhouse Gas Bulletin, 2017.

[13] 孟倩文, 尹 球. 中国区域CO2多年时空变化的卫星遥感分析[J]. 遥感技术与应用, 2016, 31(2): 203-213.

    Meng Qianwen, Yin Qiu. Remote sensing analysis of multi-years spatial and temporal variation of CO2 in China[J]. Remote Sensing Technology and Application, 2016, 31(2): 203-213(in Chinese).

[14] 石广玉, 戴 铁, 徐 娜. 卫星遥感探测大气CO2浓度研究最新进展[J]. 地球科学进展, 2010, 25(1): 7-13.

    Shi Guangyu, Dai Tie, Xu Na. Latest progress of the study of atmospheric CO2 concentration retrievals from satellite[J]. Advances in Earth Science, 2010, 25(1):7-13(in Chinese).

[15] Menzel W P, Schmit T J, Zhang P,et al. Satellite based atmospheric infrared sounder development and applications[J]. Bulletin of the American Meteorological Society. 2018, 99(3): 583-603.

[16] Barkley M P, Monks P S, Hewitt A J,et al. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO2 retrieved using (FSI) WFM-DOAS[J]. Atmospheric Chemistry & Physics Discussions, 2007, 7(1):3597-3619.

[17] Pagano T S, Chahine M T, Olsen E T. Seven years of observations of mid-tropospheric CO2 from the Atmospheric Infrared Sounder[J]. Acta Astronautica, 2011, 69(7): 355-359.

[18] 白文广, 张兴赢, 张 鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010. 55(30): 2953-2960.

    Bai Wenguang, Zhang Xingying, Zhang Peng. Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations[J]. Chinese Science Bulletin, 2010. 55(30): 2953-2960(in Chinese).

[19] Butz A, Guerlet S, Hasekamp O,et al. Toward accurate CO2 and CH4 observations from GOSAT[J]. Geophysical Research Letters, 2011. 38(14): 130-137.

[20] Hammerling D M, Michalak A M, Kawa S R. Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2[J]. Journal of Geophysical Research: Atmospheres, 2012. 117(D6).

[21] Yang D, Liu Y, Cai Z,et al. First global carbon dioxide maps produced from Tan Sat measurements[J]. Advances in Atmospheric Sciences, 2018, 35(6):621-623.

[22] 何 茜,余 涛,程天海等. 大气二氧化碳遥感反演精度检验及时空特征分析[J]. 遥感技术与应用, 2012, 14(2): 250-257.

    He Qian, Yu Tao, Cheng Tianhai,et al. Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatio-temporal characteristics analysis[J]. Journal of Geo-Information Science, 2012, 14(2): 250-257(in Chinese).

[23] Pagano T S, Olsen E T. Global variability of midtropospheric carbon dioxide as measured by the Atmospheric Infrared Sounder[J].Journal of Applied Remote Sensing, 2014, 8(1):4480-4494.

[24] Tarasova O, Koide H, Dlugokencky E,et al. The state of greenhouse gases in the atmosphere using global observations through 2011[J]. Egu General Assembly, 2012, 8, 110-112.

[25] World Metrological Association.The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2004[M]. Genvea: WMO Greenhouse Gas Bulletin, 2006.

[26] British Petroleum Company.BP Statistical Review of World Energy June 2017[M]. London:BP World Energy Review, 2017.

[27] Jenny B, Liem J, avri?倣 B,et al. Interactive video maps: A year in the life of Earth’s CO2[J]. Journal of Maps, 2016, 12(1): 1-7.

[28] Pawson S, Gelaro R, Ott L,et al. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model[EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20180000764&qs=N%3D4294966724. 2018.

[29] Chen C T A, Jones E P, Lin K. Wintertime total carbon dioxide measurements in the Norwegian and greenland seas[J].Deep Sea Research Part A Oceanographic Research Papers, 1990, 37(9): 1455-1473.

[30] Forkel M, Carvalhais N, Rdenbeck C,et al. Enhanced seasonal CO2 exchange caused by amplified plant productivity in northern ecosystems[C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts. 2016.

[31] 周曼蒂. 对流层CO2浓度卫星遥感反演及误差分析[D]. 上海:华东师范大学博士论文. 2013.

    Zhou Mandi. CO2 in Mid-troposphere Satellite Remote Sensing Retrieval Accuracy Inspection and the Errors’ Analysis[D]. Shanghai: Doctorial Dissertation of East China Normal University. 2013(in Chinese).

[32] Christensen T R, Friborg T, Sommerkorn M,et al. Trace gas exchange in a high-arctic valley: 1. Variations in CO2 and CH4 flux between tundra vegetation types[J]. Global Biogeochemical Cycles, 2000, 14(3): 701-713.

[33] Welker J M, Fahnestock J T, Jones M H. Annual CO2 flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth[J]. Climatic Change, 2000, 44(1-2): 139-150.

[34] Ostendorf B. Modeling the influence of hydrological processes on spatial and temporal patterns of CO2 soil efflux from an arctic tundra catchment[J]. Arctic & Alpine Research, 1996, 28(3):318-327.

[35] 李明威. 大气二氧化碳浓度及碳源汇的南北半球差异研究[D]. 北京:清华大学硕士论文, 2013.

    Li Mingwei.The Study of the Different Atmospheric Carbon Dioxide Concentration and Carbon Sink Between the Northern and Southern Hemispheres[D]. Beijing: Master’s Thesis of Tsinghua University, 2013(in Chinese).

[36] Sabine C L, Feely R A, Gruber N,et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367.

[37] 国家统计局能源统计司. 中国能源统计年鉴2017[M]. 北京:中国统计出版社. 2017.

    Department of Energy Statistics, National Bureau of Statistics of China.China Energy Statistical Yearbook 2017[M]. Beijing: China Statistics Press. 2017(in Chinese).

[38] 张 莉, 吕碧洪, 李 伟. 近10年中国不同区域CO2排放现状和特征[J].浙江大学学报(理学版), 2012, 39(5), 552-556.

    Zhang Li, Lv Bihong, Li Wei. The present situation and characteristic of CO2 emissions in different region of China over the past decade[J]. Journal of Zhejiang University (Science Edition), 2012, 39(5), 552-556(in Chinese).

[39] 张宏武, 时临云. 中国各省区CO2排放特征的比较分析[C]// 中国环境科学学会学术年会. 2010.

    Zhang Hongwu, Shi Linyun. The comparative analysis of CO2 emission characteristics of various provinces and regions in China[C]// Annual meeting of the Chinese academy of environmental sciences. 2010(in Chinese).

[40] Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis[J].Global Change Biology, 2002, 8(4), 345-360.

[41] 姚作新, 李 秦, 刘卫平等. 1960-2015年新疆塔什库尔干河谷季节性冻土对气候变化的响应[J].干旱区地理(汉文版), 2017, 40(2), 257-265.

    Yao Zuoxin, Li Qin, Liu Weiping,et al. Response of seasonal frozen soil to climate change in Taxkorgan River Valley of Xinjiang duing 1960-2015[J]. Arid Land Geography, 2017, 40(2), 257-265(in Chinese).

[42] 王恩重. 青藏高原冰川融化蓄水量近30年减少1/10[J]. 草业科学, 2007, (2), 104-104.

    Wang Enchong. Glacier Melting Water Storage on the Tibetan plateau had reduced the tenth in the past 30 years[J].Pratacultural Science, 2007, (2), 104-104(in Chinese).

[43] 赵拥华, 赵 林, 武天云等. 冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J].冰川冻土, 2006, 28(2), 183-190.

    Zhao Yonghua, Zhao Lin, Wu Tianyun,et al. Variation of CO2 Concentration in Active Layer in Beiluhe Permafrost Region of the Tibetan Plateau during Winter and Spring[J]. Journalof Glaciology and Geocryology, 2006, 28(2), 183-190(in Chinese).

[44] 努尔帕提曼·买买提热依木, 帕尔哈提·阿不都拉. 帕米尔高原塔什库尔干县1960-2014年气温及降水变化[J].沙漠与绿洲气象, 2015, 9(1): 54-58.

    Nuerpatiman·Maimaiti, Parhat.Abdulla. The temperature and precipitation changes in tashkurgan county, pamir plateau from 1960 to 2014[J]. Desert and Oasis Meteorology, 2015, 9(1),54-58(in Chinese).

[45] 李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究[D]. 兰州:兰州大学硕士论文, 2012.

    Li Changming.Phylogenetic and functional Diversity of Bacterial Community in Permafrost-Affected Soils in Qinghai-Tibet Plateau[D]. Lanzhou: Master’s Thesis of Lanzhou University, 2013(in Chinese).

张绍会, 谢冰, 张华, 周喜讯. 基于AIRS卫星的全球和东亚地区CO2时空特征分析[J]. 大气与环境光学学报, 2019, 14(6): 442. ZHANG Shaohui, XIE Bing, ZHANG Hua, Zhou Xixun. Spatial-Temporal Distribution Characteristics of CO2 over Globe and East Asia by AIRS Satellite[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 442.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!