光电工程, 2019, 46 (2): 180219, 网络出版: 2019-03-17   

多光谱多光轴平行性检测方案设计与误差分析

Design and error analysis of multi-spectral and multi-axis parallelism testing scheme
作者单位
1 陆军工程大学石家庄校区电子与光学工程系,河北石家庄 050003
2 中国人民解放军 63936部队,北京 102202
3 南京军代局驻扬州地区军代室,江苏扬州 225009
摘要
模块化设计、多通道集成已成为当前光电装备研制的主流思路,但多个探测单元的光轴一致性却直接影响着光电装备的使用效能。现有方法难以兼顾多光谱、多光轴、高精度、大轴系跨度等多种光轴平行性检测需求,为此,本文提出了一种基于“反射式结构 +光轴平移”思想的多光谱多光轴平行性检测方案。采用“反射式结构”设计反射式平行光管,解决了多光谱范围内可见光、微光、激光、红外等不同波段光轴的平行性检测问题;利用“光轴平移”思想解决了大跨度范围内光轴间平行性检测问题。结果表明:本设计方案的平行性检测误差小于 0.134 mrad,可检测的轴系跨度可达 0.5 m,能够满足绝大多数光电装备的光轴平行性检测需求。
Abstract
The modular design and multi-channel integration has become the main thought of developing the pho-toelectric equipment, and the multi-axis parallelism directly influences the equipment performance. The current me-thods cannot meet the actual testing needs of multi-spectral, multi-axis, high-precise and large axis space. Thus a multi-spectral and multi-axis parallelism testing scheme is put forward by adopting the designing thought of reflective type and optical axis translation. The reflective collimator is designed to solve the multi-spectral and multi-axis par-allelism testing problems, and the optical axis translation design can increase the axis space of multi-axis parallelism test. The results show that the parallelism testing error is less than 0.134 mrad and the axis space can reach 0.5 m, which can satisfy parallelism testing needs of most photoelectric equipment.
参考文献

[1] Chen Z B, XiaoW J, Ma D X, et al. A method for large distance multi-optical axis parallelism online detection[J]. Acta Optica Sinica, 2017, 37(1): 112006.陈志斌, 肖文健, 马东玺, 等. 大间距多光轴一致性野外在线检测方法[J].光学学报, 2017, 37(1): 112006.

[2] Ji S P. Equipment development of airborne electro-optic payl-oad and its key technologies[J]. Aero Weaponry, 2017(6): 3–12.吉书鹏. 机载光电载荷装备发展与关键技术 [J].航空兵器, 2017(6): 3–12.

[3] He H H, YeL, Zhou X Y, et al. Theory and precision analysis of testing apparatus of parallel depth[J]. Opto-Electronic Engi-neering, 2007, 34(5): 52–56.贺和好, 叶露, 周兴义, 等. 平行度测试仪原理及其测量精度分析[J].光电工程, 2007, 34(5): 52–56.

[4] Wang X, Bai S P, Xu T H. A method for large distance mul-ti-optical axis parallelism measurement[J]. Journal of Chang-chun University of Science and Technology (Natural Science Edition), 2017, 40(6): 48–51.王鑫, 白素平, 许庭赫 . 远距多光轴平行度检测方法研究 [J]. 长春理工大学学报(自然科学版), 2017, 40(6): 48–51.

[5] Xiao Z J, Guo X X, Xia Y, et al. Research on detection system of optical sights triaxial parallelism[J]. Optik -International Journal for Light and Electron Optics, 2014, 125(16): 4427–4430.

[6] Li J R,Wang Z Q,Wang C X, et al. Sight axis measuring of the single axis photoelectric measuring system[J]. Opto-Electronic Engineering, 2015, 42(11): 8–12.李建荣, 王志乾, 王春霞, 等. 单轴光电系统视轴测量方法研究 [J].光电工程, 2015, 42(11): 8–12.

[7] Wang Y, Huang Y, Li Z F, et al. Calibration of optical axis par-allelism by using star for astronomical observation system[J]. Infrared and Laser Engineering, 2017, 46(5): 124–129.王阳, 黄煜, 李占峰 , 等. 利用恒星对天文观测系统光轴平行性检校[J].红外与激光工程, 2017, 46(5): 124–129.

[8] Yan Z Q, YangJ C, Xie Z H, et al. Optical axis parallelism calibration system of large-scale multi-spectral multi-optical axis[J]. Journal of Applied Optics, 2016, 37(6): 823–828. 闫宗群, 杨建昌, 谢志宏, 等. 大尺度多光谱多光轴平行性检校系统[J].应用光学, 2016, 37(6): 823–828.

[9] Zuo X Z, Shen L J, Yang H C, et al. Alignment technology of catadioptric linear array LWIR sensor[J]. Opto-Electronic En-gineering, 2016, 43(5): 82–87. 左晓舟, 沈良吉, 杨海成, 等. 折反式长波线阵红外传感器装调技术[J].光电工程, 2016, 43(5): 82–87.

[10] 王永仲. 鱼眼镜头光学[M].北京: 科学出版社, 2006.

[11] Tang J, Wang W H, Hong S X, et al. General specification for telescope: GJB 1240–1991[S]. Beijing: Commission on Science, Technology and Industry for National Defense, 1992.唐捷 , 王文华 , 洪善贤 , 等 . 望远镜通用规范 : GJB 1240–1991[S]. 北京: 国防科学技术工业委员会, 1992.

[12] Li X R, Zhang ZM, Li Y F, et al. General specification for low light level observation scope: GJB 5695–2006[S]. Beijing: The General Armament Department of the PLA, 2006.李兴荣 , 张志明 , 李延峰 , 等. 微光夜视观察镜通用规范 : GJB 5695–2006[S]. 北京: 中国人民解放军总装备部, 2006.

[13] Shi T H, Ren X M, Zhang L S, et al. General specification for military optical instruments: GJB 369A–1998[S]. Beijing: Commission on Science, Technology and Industry for National Defense, 1998. 施亭侯 , 任曦明 , 张连顺 , 等. 军用光学仪器通用规范 : GJB 369A–1998[S]. 北京: 国防科学技术工业委员会, 1998.

[14] Yang D Z, Liu QX, Zhao C X, et al. General specifications for optical reconnaissance equipment tactical and technical per-formance: GJBz 20420.2–97[S]. Beijing: The General Staff of the Chinese People's Liberation Army, 1997.杨达钊 , 刘庆新 , 赵长祥 , 等. 光学侦察装备通用规范战术技术性能要求: GJBz 20420.2–97[S].北京: 中国人民解放军总参谋部, 1997.

[15] Jiang Z H, Wu X D, Xu R, et al. General specification for military photoelectric goniometer: GJB 5231–2004[S]. Beijing: The General Armament Department of the PLA, 2005.蒋增红 , 吴轩东 , 徐榕, 等. 军用光电测角仪通用规范 : GJB 5231–2004[S]. 北京: 中国人民解放军总装备部, 2005.

黄富瑜, 李刚, 史云胜, 张晓良, 邹昌帆, 禹烨. 多光谱多光轴平行性检测方案设计与误差分析[J]. 光电工程, 2019, 46(2): 180219. Huang Fuyu, Li Gang, Shi Yunsheng, Zhang Xiaoliang, Zou Changfan, Yu Ye. Design and error analysis of multi-spectral and multi-axis parallelism testing scheme[J]. Opto-Electronic Engineering, 2019, 46(2): 180219.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!