Photonics Research, 2018, 6 (5): 05000B82, Published Online: Jul. 6, 2018   

Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited] Download: 706次

Author Affiliations
1 Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
2 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Copy Citation Text

Chawin Sitawarin, Weiliang Jin, Zin Lin, Alejandro W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited][J]. Photonics Research, 2018, 6(5): 05000B82.

References

[1] K. W. DeLong, R. Trebino, J. Hunter, W. E. White. Frequency-resolved optical gating with the use of second-harmonic generation. J. Opt. Soc. Am. B, 1994, 11: 2206-2215.

[2] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, M. M. Fejer. Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate. Opt. Lett., 1997, 22: 1341-1343.

[3] T. F. Heinz, C. K. Chen, D. Ricard, Y. R. Shen. Spectroscopy of molecular monolayers by resonant second-harmonic generation. Phys. Rev. Lett., 1982, 48: 478-481.

[4] P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, D. Weyburne. Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs. Opt. Lett., 2006, 31: 71-73.

[5] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.-S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch. Terahertz-wave generation in quasi-phase-matched GaAs. Appl. Phys. Lett., 2006, 89: 141119.

[6] R. Krischek, W. Wieczorek, A. Ozawa, N. Kiesel, P. Michelberger, T. Udem, H. Weinfurter. Ultraviolet enhancement cavity for ultrafast nonlinear optics and high-rate multiphoton entanglement experiments. Nat. Photonics, 2010, 4: 170-173.

[7] A. Vaziri, G. Weihs, A. Zeilinger. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett., 2002, 89: 240401.

[8] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, H. Zbinden. A photonic quantum information interface. Nature, 2005, 437: 116-120.

[9] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, C. Becher. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter. Phys. Rev. Lett., 2012, 109: 147404.

[10] J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, G. Leuchs. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett., 2010, 104: 153901.

[11] M. M. Fejer. Nonlinear optical frequency conversion. Phys. Today, 1994, 47: 25-32.

[12] M. Soljačić, J. D. Joannopoulos. Enhancement of nonlinear effects using photonic crystals. Nat. Mater., 2004, 3: 211-219.

[13] Y. Dumeige, P. Feron. Wispering-gallery-mode analysis of phase-matched doubly resonant second-harmonic generation. Phys. Rev. A, 2006, 74: 063804.

[14] L.-A. Wu, M. Xiao, H. J. Kimble. Squeezed states of light from an optical parametric oscillator. J. Opt. Soc. Am. B, 1987, 4: 1465-1476.

[15] C. Simonneau, J. P. Debray, J. C. Harmand, P. Vidaković, D. J. Lovering, J. A. Levenson. Second-harmonic generation in a doubly resonant semiconductor microcavity. Opt. Lett., 1997, 22: 1775-1777.

[16] R. Paschotta, K. Fiedler, P. Kurz, J. Mlynek. Nonlinear mode coupling in doubly resonant frequency doublers. Appl. Phys. Lett., 1994, 58: 117-122.

[17] K. Koch, G. T. Moore. Singly resonant cavity-enhanced frequency tripling. J. Opt. Soc. Am. B, 1999, 16: 448-459.

[18] M. Liscidini, L. A. Andreani. Highly efficient second-harmonic generation in doubly resonant planar microcavities. Appl. Phys. Lett., 2004, 85: 1883-1885.

[19] K. Rivoire, S. Buckley, J. Vuckovic. Multiply resonant high quality photonic crystal nanocavities. Appl. Phys. Lett., 2011, 99: 013114.

[20] D. Ramirez, A. W. Rodriguez, H. Hashemi, J. D. Joannopoulos, M. Solijacic, S. G. Johnson. Degenerate four-wave mixing in triply-resonant nonlinear Kerr cavities. Phys. Rev. A, 2011, 83: 033834.

[21] Z. Lin, T. Alcorn, M. Loncar, S. Johnson, A. Rodriguez. High-efficiency degenerate four wave-mixing in triply. Phys. Rev. A, 2014, 89: 053839.

[22] W. H. P. Pernice, C. Xiong, C. Schuck, H. X. Tang. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl. Phys. Lett., 2012, 100: 223501.

[23] Z.-F. Bi, A. W. Rodriguez, H. Hashemi, D. Duchesne, M. Loncar, K.-M. Wang, S. G. Johnson. High-efficiency second-harmonic generation in doubly-resonant χ(2) microring resonators. Opt. Express, 2012, 20: 7526-7543.

[24] K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, J. Vučković. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt. Express, 2009, 17: 22609-22615.

[25] S. Buckley, M. Radulaski, J. L. Zhang, J. Petykiewicz, K. Biermann, J. Vučković. Multimode nanobeam cavities for nonlinear optics: high quality resonances separated by an octave. Opt. Express, 2014, 22: 26498-26509.

[26] A. Rodriguez, M. Soljačić, J. D. Joannopulos, S. G. Johnson. χ(2) and χ. Opt. Express, 2007, 15: 7303-7318.

[27] Z. Lin, X. Liang, M. Lončar, S. G. Johnson, A. W. Rodriguez. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica, 2016, 3: 233-238.

[28] LinZ.LončarM.RodriguezA. W., “Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion,” arXiv:1701.05628 (2017).

[29] L. Goldberg, D. A. V. Kliner. Tunable UV generation at 286 nm by frequency tripling of a high-power mode-locked semiconductor laser. Opt. Lett., 1995, 20: 1640-1642.

[30] Y. Yelin, D. Silberberg. Laser scanning third-harmonic-generation microscopy in biology. Opt. Express, 1999, 5: 169-175.

[31] P. Pantazis, J. Maloney, D. Wu, S. E. Fraser. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl. Acad. Sci. USA, 2010, 107: 14535-14540.

[32] D. R. Hamel, A. Fedrizzi, S. Ramelow, K. J. Resch, T. Jennewein. Direct generation of photon triplets using cascaded photon-pair sources. Nature, 2010, 466: 601-603.

[33] K. Rivoire, S. Buckley, F. Hatami, J. Vuckovic. Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities. Appl. Phys. Lett., 2011, 98: 263113.

[34] BuckleyS.RadulaskiM.BiermannK.VuckovicJ., “Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs,” arXiv:1308.6051v1 (2013).

[35] D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, D. L. Weidman. Nonlinear optical susceptibilities of high-index glasses. Appl. Phys. Lett., 1989, 54: 1293-1295.

[36] AhmadR.SoljacicM.IbanescuM.EngenessT.SkorobogatlyM.JohnsonS.WeisbergO.FinkY.PressmanL.KingW.AndersonE.JoannopoulosJ. D., “High index-contrast fiber waveguides and applications,” U.S. patent6,788,864 B2 (April 12, 2004).

[37] M. Lapine, I. V. Shadrivov, Y. S. Kivshar. Colloquium: nonlinear metamaterials. Rev. Mod. Phys., 2014, 86: 1093-1123.

[38] S. Campione, A. Benz, M. B. Sinclair, F. Capolino, I. Brener. Second harmonic generation from metamaterials strongly coupled to intersubband transitions in quantum wells. Appl. Phys. Lett., 2014, 104: 131104.

[39] J. Lee, M. Tymchenko, C. Argyropoulos, P.-Y. Chen, F. Lu, F. Demmerle, G. Boehm, M.-C. Amann, A. Alu, M. A. Belkin. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature, 2014, 511: 65-69.

[40] O. Wolf, S. Campione, A. Benz, A. P. Ravikumar, S. Liu, T. S. Luk, E. A. Kadlec, E. A. Shaner, J. F. Klem, M. B. Sinclair, I. Brener. Phased-array sources based on nonlinear metamaterial nanocavities. Nat. Commun., 2015, 6: 7667.

[41] K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, X. Zhang. Predicting nonlinear properties of metamaterials from the linear response. Nat. Mater., 2015, 14: 379-383.

[42] Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, J. Valentine. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett., 2015, 15: 7388-7393.

[43] N. Segal, S. Keren-Zur, N. Hendler, T. Ellenbogen. Controlling light with metamaterial-based nonlinear photonic crystals. Nat. Photonics, 2015, 9: 180-184.

[44] J. Butet, P.-F. Brevet, O. J. Martin. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano, 2015, 9: 10545-10562.

[45] A. Bétourné, Y. Quiquempois, G. Bouwmans, M. Douay. Design of a photonic crystal fiber for phase-matched frequency doubling or tripling. Opt. Express, 2008, 16: 14255-14262.

[46] F. G. Omenetto, A. J. Taylor, M. D. Moores, J. Arriaga, J. C. Knight, W. J. Wadsworth, P. St. J. Russell. Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. Opt. Lett., 2001, 26: 1158-1160.

[47] B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 2009, 3: 206-210.

[48] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2017, 2: 17010.

[49] S. Liu, M. B. Sinclair, S. Saravi, G. A. Keeler, Y. Yang, J. Reno, G. M. Peake, F. Setzpfandt, I. Staude, T. Pertsch, I. Brener. Resonantly enhanced second-harmonic generation using III--V semiconductor all-dielectric metasurfaces. Nano Lett., 2016, 16: 5426-5432.

[50] O. Wolf, A. A. Allerman, X. Ma, J. R. Wendt, A. Y. Song, E. A. Shaner, I. Brener. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials. Appl. Phys. Lett., 2015, 107: 151108.

[51] M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, A. Alù. Gradient nonlinear pancharatnam-berry metasurfaces. Phys. Rev. Lett., 2015, 115: 207403.

[52] JoannopoulosJ. D.JohnsonS. G.WinnJ. N.MeadeR. D., Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

[53] MoleskyS.LinZ.PiggotA.JinW.VuckovicJ.RodriguezA. W., “Outlook for inverse design in nanophotonics,” arXiv:1801.06715 (2018).

[54] W. J. Kim, J. D. O’Brien. Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite-element method. J. Opt. Soc. Am. B, 2004, 21: 289-295.

[55] B. S. Darki, N. Granpayeh. Improving the performance of a photonic crystal ring-resonator-based channel drop filter using particle swarm optimization method. Opt. Commun., 2010, 283: 4099-4103.

[56] M. Minkov, V. Savona. Automated optimization of photonic crystal slab cavities. Sci. Rep., 2014, 4: 5124.

[57] A. Gondarenko, S. Preble, J. Robinson, L. Chen, H. Lipson, M. Lipson. Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. Phys. Rev. Lett., 2006, 96: 143904.

[58] J. Jensen, O. Sigmund. Topology optimization for nano-photonics. Laser Photon. Rev., 2011, 5: 308-321.

[59] N. Aage, E. Andreassen, B. S. Lazarov, O. Sigmund. Giga-voxel computational morphogenesis for structural design. Nature, 2017, 550: 84-86.

[60] X. Liang, S. G. Johnson. Formulation for scalable optimization of microcavities via the frequency-averaged local density of states. Opt. Express, 2013, 21: 30812-30841.

[61] D. Liu, L. H. Gabrielli, M. Lipson, S. G. Johnson. Transformation inverse design. Opt. Express, 2013, 21: 14223-14243.

[62] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, J. Vuckovic. Inverse design and implementation of a wavelength demultiplexing grating coupler. Sci. Rep., 2014, 4: 7210.

[63] MenH.LeeK. Y. K.FreundR. M.PeraireJ.JohnsonS. G., “Robust topology optimization of three-dimensional photonic-crystal band-gap structures,” arXiv:1405.4350 (2014).

[64] A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, J. Vuckovic. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer. Nat. Photonics, 2015, 9: 374-377.

[65] B. Shen, P. Wang, R. Menon. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics, 2015, 9: 378-382.

[66] StrangG., Computational Science and Engineering (Wellesley-Cambridge, 2007), Vol. 791.

[67] J. D. Deaton, R. V. Grandhi. A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim., 2014, 49: 1-38.

[68] BendsøeM. P.SigmundO.BendsøeM. P.SigmundO., Topology Optimization by Distribution of Isotropic Material (Springer, 2004).

[69] M. Y. Wang, X. Wang, D. Guo. A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng., 2003, 192: 227-246.

[70] HaslingerJ.MäkinenR. A., Introduction to Shape Optimization: Theory, Approximation, and Computation (SIAM, 2003).

[71] K. Svanberg. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim., 2002, 12: 555-573.

[72] WangF.SigmundO., “Optimization of photonic crystal cavities,” in International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (IEEE, 2017), pp. 3940.

[73] BoydR. W., Nonlinear Optics (Academic, 1992).

[74] TafloveA.HagnessS. C., Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

[75] B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, Y. Fink. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature, 2002, 420: 650-653.

[76] X. Feng, T. Monro, P. Petropoulos, V. Finazzi, D. Hewak. Solid microstructured optical fiber. Opt. Express, 2003, 11: 2225-2230.

[77] V. Grubsky, A. Savchenko. Glass micro-fibers for efficient third harmonic generation. Opt. Express, 2005, 13: 6798-6806.

[78] AgrawalG. P., Fiber-Optic Communication Systems (Wiley, 2012), Vol. 222.

[79] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 2014, 13: 139-150.

[80] L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, T. Ellenbogen. Nonlinear surface lattice resonance in plasmonic nanoparticle arrays. Phys. Rev. Lett., 2017, 118: 243904.

[81] S. Keren-Zur, O. Avayu, L. Michaeli, T. Ellenbogen. Nonlinear beam shaping with plasmonic metasurfaces. ACS Photon., 2015, 3: 117-123.

[82] KrasnokA.TymchenkoM.AlùA., “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” arXiv:1706.07563 (2017).

[83] W. Bond. Measurement of the refractive indices of several crystals. J. Appl. Phys., 1965, 36: 1674-1677.

[84] I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B, 1997, 14: 2268-2294.

Chawin Sitawarin, Weiliang Jin, Zin Lin, Alejandro W. Rodriguez. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited][J]. Photonics Research, 2018, 6(5): 05000B82.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!