Photonics Research, 2019, 7 (11): 11001354, Published Online: Nov. 1, 2019   

Design, fabrication, and characterization of a highly nonlinear few-mode fiber Download: 603次

Author Affiliations
1 Wuhan National Laboratory for Optoelectronics, and School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg 41296, Sweden
3 State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC), Wuhan 430073, China
4 School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
Copy Citation Text

Jitao Gao, Elham Nazemosadat, Chen Yang, Songnian Fu, Ming Tang, Weijun Tong, Joel Carpenter, Jochen Schröder, Magnus Karlsson, Peter A. Andrekson. Design, fabrication, and characterization of a highly nonlinear few-mode fiber[J]. Photonics Research, 2019, 7(11): 11001354.

References

[1] D. J. Richardson, J. M. Fini, L. E. Nelson. Space-division multiplexing in optical fibres. Nat. Photonics, 2013, 7: 354-362.

[2] R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R. J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, R. Lingle. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol., 2012, 30: 521-531.

[3] KoebeleC.SalsiM.MilordL.RyfR.BolleC.SillardP.BigoS.CharletG., “40?km transmission of five mode division multiplexed data streams at 100??Gb/s with low MIMO-DSP complexity,” in 37th European Conference and Exhibition on Optical Communication (2011), paper?Th.13.C.3.

[4] R. Stolen. Phase-matched-stimulated four-photon mixing in silica-fiber waveguides. IEEE J. Quantum Electron., 1975, 11: 100-103.

[5] ZhaoN.HuangB.Amezcua-CorreaR.LiX.LiG., “Few-mode fiber optical parametric amplifier,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (2013), paper?OTu2D.5.

[6] M. Guasoni. Generalized modulational instability in multimode fibers: wideband multimode parametric amplification. Phys. Rev. A, 2015, 92: 033849.

[7] E. Nazemosadat, A. Lorences-Riesgo, M. Karlsson, P. A. Andrekson. Design of highly nonlinear few-mode fiber for C-band optical parametric amplification. J. Lightwave Technol., 2017, 35: 2810-2817.

[8] Y. Xiao, R.-J. Essiambre, M. Desgroseilliers, A. M. Tulino, R. Ryf, S. Mumtaz, G. P. Agrawal. Theory of intermodal four-wave mixing with random linear mode coupling in few-mode fibers. Opt. Express, 2014, 22: 32039-32059.

[9] R. J. Essiambre, M. A. Mestre, R. Ryf, A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, Y. Sun, X. Jiang, R. Lingle. Experimental investigation of inter-modal four-wave mixing in few-mode fibers. IEEE Photon. Technol. Lett., 2013, 25: 539-542.

[10] S. M. M. Friis, I. Begleris, Y. Jung, K. Rottwitt, P. Petropoulos, D. J. Richardson, P. Horak, F. Parmigiani. Inter-modal four-wave mixing study in a two-mode fiber. Opt. Express, 2016, 24: 30338-30349.

[11] O. F. Anjum, P. Horak, Y. Jung, M. Suzuki, Y. Yamamoto, T. Hasegawa, P. Petropoulos, D. J. Richardson, F. Parmigiani. Bandwidth enhancement of inter-modal four wave mixing Bragg scattering by means of dispersion engineering. APL Photon., 2019, 4: 022902.

[12] J. Demas, L. Rishøj, X. Liu, G. Prabhakar, S. Ramachandran. Intermodal group-velocity engineering for broadband nonlinear optics. Photon. Res., 2019, 7: 1-7.

[13] H. Zhang, M. Bigot-Astruc, L. Bigot, P. Sillard, J. Fatome. Multiple modal and wavelength conversion process of a 10-Gbit/s signal in a 6-LP-mode fiber. Opt. Express, 2019, 27: 15413-15425.

[14] RademacherG.RyfR.FontaineN. K.ChenH.JopsonR. M.EssiambreR.PuttnamB. J.LuísR. S.AwajiY.WadaN.GrossS.RiesenN.WithfordM.SunY.LingleR., “Experimental investigation of parametric mode and wavelength conversion in a 4.7?km few-mode fiber,” in European Conference on Optical Communication (ECOC) (2018), p.?1.

[15] E. Nazemosadat, A. Mafi. Design considerations for multicore optical fibers in nonlinear switching and mode-locking applications. J. Opt. Soc. Am. B, 2014, 31: 1874-1878.

[16] G. Lopez-Galmiche, Z. S. Eznaveh, M. A. Eftekhar, J. A. Lopez, L. G. Wright, F. Wise, D. Christodoulides, R. A. Correa. Visible supercontinuum generation in a graded index multimode fiber pumped at 1064 nm. Opt. Lett., 2016, 41: 2553-2556.

[17] L. G. Wright, D. N. Christodoulides, F. W. Wise. Controllable spatiotemporal nonlinear effects in multimode fibres. Nat. Photonics, 2015, 9: 306-310.

[18] H. Pourbeyram, E. Nazemosadat, A. Mafi. Detailed investigation of intermodal four-wave mixing in SMF-28: blue-red generation from green. Opt. Express, 2015, 23: 14487-14500.

[19] J. Cheng, M. E. V. Pedersen, K. Charan, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen. Intermodal four-wave mixing in a higher-order-mode fiber. Appl. Phys. Lett., 2012, 101: 161106.

[20] E. Nazemosadat, H. Pourbeyram, A. Mafi. Phase matching for spontaneous frequency conversion via four-wave mixing in graded-index multimode optical fibers. J. Opt. Soc. Am. B, 2016, 33: 144-150.

[21] R. Dupiol, A. Bendahmane, K. Krupa, J. Fatome, A. Tonello, M. Fabert, V. Couderc, S. Wabnitz, G. Millot. Intermodal modulational instability in graded-index multimode optical fibers. Opt. Lett., 2017, 42: 3419-3422.

[22] A. Bendahmane, K. Krupa, A. Tonello, D. Modotto, T. Sylvestre, V. Couderc, S. Wabnitz, G. Millot. Seeded intermodal four-wave mixing in a highly multimode fiber. J. Opt. Soc. Am. B, 2018, 35: 295-301.

[23] K. Inoue. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. J. Lightwave Technol., 1992, 10: 1553-1561.

[24] AgrawalG. P., Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

[25] R. H. Stolen, J. E. Bjorkholm, A. Ashkin. Phase-matched three-wave mixing in silica fiber optical waveguides. Appl. Phys. Lett., 1974, 24: 308-310.

[26] C. J. McKinstrie, S. Radic, M. G. Raymer. Quantum noise properties of parametric amplifiers driven by two pump waves. Opt. Express, 2004, 12: 5037-5066.

[27] RademacherG.LuísR. S.PuttnamB. J.AwajiY.SuzukiM.HasegawaT.WadaN., “Wide-band intermodal wavelength conversion in a dispersion engineered highly nonlinear FMF,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2019), paper?W1C.4.

[28] K. Nakajima, M. Ohashi. Dopant dependence of effective nonlinear refractive index in GeO2- and F-doped core single-mode fibers. IEEE Photon. Technol. Lett., 2002, 14: 492-494.

[29] K. Uesaka, K. K. Y. Wong, M. E. Marhic, L. G. Kazovsky. Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments. IEEE J. Sel. Top. Quantum Electron., 2002, 8: 560-568.

[30] J. Carpenter, B. C. Thomsen, T. D. Wilkinson. Degenerate mode-group division multiplexing. J. Lightwave Technol., 2012, 30: 3946-3952.

[31] J. Carpenter, B. J. Eggleton, J. Schröder. 110×110 optical mode transfer matrix inversion. Opt. Express, 2014, 22: 96-101.

[32] Q. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 2009, 1: 1-57.

[33] Y. Yang, J. Cui, S. Fu, M. Tang, D. Liu. All-fiber flexible generation of the generalized cylindrical vector beam (CVB) over the C-band. IEEE J. Sel. Top. Quantum Electron., 2020, 26: 4500307.

[34] J. Cheng, M. E. V. Pedersen, K. Wang, C. Xu, L. Grüner-Nielsen, D. Jakobsen. Time-domain multimode dispersion measurement in a higher-order-mode fiber. Opt. Lett., 2012, 37: 347-349.

[35] J. Su, X. Dong, C. Lu. Characteristics of few mode fiber under bending. IEEE J. Sel. Top. Quantum Electron., 2016, 22: 139-145.

[36] A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, O. A. Levring. Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 μm. Opt. Lett., 1996, 21: 1966-1968.

[37] K. Krupa, A. Tonello, V. V. Kozlov, V. Couderc, P. D. Bin, S. Wabnitz, A. Barthélémy, L. Labonté, S. Tanzilli. Bragg-scattering conversion at telecom wavelengths towards the photon counting regime. Opt. Express, 2012, 20: 27220-27225.

[38] M. Guasoni, F. Parmigiani, P. Horak, J. Fatome, D. J. Richardson. Intermodal four-wave mixing and parametric amplification in kilometer-long multimode fibers. J. Lightwave Technol., 2017, 35: 5296-5305.

[39] M. Esmaeelpour, R. Essiambre, N. K. Fontaine, R. Ryf, J. Toulouse, Y. Sun, R. Lingle. Power fluctuations of intermodal four-wave mixing in few-mode fibers. J. Lightwave Technol., 2017, 35: 2429-2435.

Jitao Gao, Elham Nazemosadat, Chen Yang, Songnian Fu, Ming Tang, Weijun Tong, Joel Carpenter, Jochen Schröder, Magnus Karlsson, Peter A. Andrekson. Design, fabrication, and characterization of a highly nonlinear few-mode fiber[J]. Photonics Research, 2019, 7(11): 11001354.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!