光子学报, 2019, 48 (9): 0906004, 网络出版: 2019-10-12   

基于最小二乘法的光纤法布里珀罗传感器相位校正解调算法

Algorithm of Phase Correction Based on Least Square Estimation for Optical Fiber FabryPerot Sensor
作者单位
1 武汉理工大学 光纤传感技术国家工程实验室, 武汉 430070
2 武汉理工大学 信息工程学院, 武汉 430070
摘要
为了提高光纤法布里珀罗传感器的解调精度和效率, 利用干涉光谱中的波峰计算出一系列光程差, 根据最小二乘法求出该组光程差中方差最小的解作为粗略解调结果, 并计算出光谱附加相位; 在光谱附加相位基础上进行校正, 得到补偿光程差, 两者之和为最终解调结果.仿真结果表明, 该算法的解调误差在±2.5 nm内.光纤法布里珀罗蓝宝石高温传感实验表明, 从室温升到1 000℃时, 该算法解调光程差精度为5.4 nm, 对应温度的精度为±0.36‰F.S., 同等条件下计算速度比FFTMMSE快400倍, 具有计算精度高, 计算速度快的优点.
Abstract
To improve the demodulation precision and efficiency of fiberoptic FabryPerot sensor, a series of optical path differences are calculated by using the peaks of the interference spectrum, and the rough demodulation result and the additional phase are obtained according to least square estimation such that the variance of the optical path differences is minimized. The spectral additional phase is corrected to obtain the compensated optical path difference .The final demodulation result is made up of the rough optical path difference and the compensation optical path difference. The simulation results show that the error of the algorithm is less than ±2.5 nm. The FabryPerot high temperature experiment results show that when the temperature is raised from room temperature to 1 000℃, the algorithm demodulates the optical path difference precision to 5.4 nm, the corresponding temperature precision is ±0.36‰F.S., and the average calculation speed is 400 times faster than that of FFTMMSE at the same condition. The algorithm is characterized by high precision and high calculating speed.
参考文献

[1] KERSEY A D, MARRONE M J. Bragg grating based nested fibre interferometers [J].Electronics Letters, 1996, 32(13): 1221.

[2] HUANG Zhengyu, ZHU Yizheng, CHEN Xiaopei, et al. Intrinsic FabryPerot fiber sensor for temperature and strain measurements[J]. Photonics Technology Letters IEEE,2005, 17(11): 24032405.

[3] CHEN Xiaopei, SHEN Fabin, WANG Zhuang, et al. Microairgap based intrinsic FabryPerot interferometric fiberoptic sensor[J]. Science Technology & Engineering, 2011, 45(30): 77607766.

[4] WANG Tingyun, WANG Wenyuan, CHEN Na, et al. Fiberoptic intrinsic FabryPerot interferometric sensors fabricated by femtosecond lasers[C]. SPIE, 2011, 8034(16): 14861491.

[5] HAN Ming, WANG Anbo. Exact analysis of lowfinesse multimode fiber extrinsic FabryPerot interferometers[J]. Applied Optics, 2004, 43(24): 46594666.

[6] JIANG Yi. Highresolution interrogation technique for fiber optic extrinsic FabryPerot interferometric sensors by the peaktopeak method[J]. Applied Optics, 2008, 47(7): 92532.

[7] 章鹏, 朱永, 陈伟民. 光纤法布里珀罗传感器腔长的傅里叶变换解调原理研究[J]. 光子学报, 2004, 33(12): 14491452.

    ZHANG Peng, ZHU Yong, CHEN Weiming. Study on Fourier transformation demodulating theory of the gap of optical fiber FabryPerot sensor[J]. Acta Photonica Sinica, 2004, 33(12): 14491452.

[8] ZHOU Xinlei, YU Qingxu. Widerange displacement sensor based on fiberoptic FabryPerot interferometer for subnanometer measurement[J]. IEEE Sensors Journal, 2011, 11(7): 16021606.

[9] HAN Ming, ZHANG Yan, SHEN Fabin, et al. Signalprocessing algorithm for whitelight optical fiber extrinsic FabryPerot interferometric sensors[J]. Optics Letters, 2004, 29(15): 17361738.

[10] MA Cheng, WANG Anbo. Multimode excitationinduced phase shifts in intrinsic FabryPerot interferometric fiber sensor spectra [J]. Applied Optics, 2010, 49(25): 4836.

[11] SHEN Fabin, WANG Anbo. Frequency estimationbased signal processing algorithm for whitelight optical fiber FabryPerot interferometers [J]. Applied Optics, 2005, 44(25): 52065214.

[12] 梁伟龙, 周次明, 范典,等. 基于蓝宝石晶片的光纤法布里珀罗高温传感器[J]. 光子学报, 2016, 45(12): 1228007.

    LIANG Weilong, ZHOU Ciming, FAN Dian. Fiberoptic FabryPerothigh temperature sensor based on sapphire wafer[J]. Acta Photonica Sinica, 2016, 45(12): 1228007.

[13] TRETTER S A . Estimating the frequency of a noisy sinusoid by linear regression(corresp.)[J]. IEEE Transactions on Information Theory, 1985, 31(6): 832835.

[14] QI Bing. Novel data processing techniques for dispersive white light interferometer[J]. Optical Engineering, 2003, 42(11): 31653171.

[15] GUI Xinwang, MICHAEL A G, QIAN Li, et al. Demodulation method combining virtual reference interferometry and minimum mean square error for fiberoptic Fabry–Perot sensors[J]. Chinese Optics Letters, 2018, 16(1): 3437.

刘嘉静, 涂子维, 周次明, 范典. 基于最小二乘法的光纤法布里珀罗传感器相位校正解调算法[J]. 光子学报, 2019, 48(9): 0906004. LIU Jiajing, TU Ziwei, ZHOU Ciming, FAN Dian. Algorithm of Phase Correction Based on Least Square Estimation for Optical Fiber FabryPerot Sensor[J]. ACTA PHOTONICA SINICA, 2019, 48(9): 0906004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!