Frontiers of Optoelectronics, 2017, 10 (3): 280, 网络出版: 2018-01-17  

Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging

Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging
作者单位
1 Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
2 School of Medicine and School of Bioengineering, Technical University of Munich, Munich, Germany
摘要
Abstract
Hand-held implementations of recently introduced real-time volumetric tomography approaches represent a promising path toward clinical translation of the optoacoustic technology. To this end, rapid acquisition of optoacoustic image data with spherical matrix arrays has attained exquisite visualizations of three-dimensional vascular morphology and function deep in human tissues. Nevertheless, significant reconstruction inaccuracies may arise from speed of sound (SoS) mismatches between the imaged tissue and the coupling medium used to propagate the generated optoacoustic responses toward the ultrasound sensing elements. Herein, we analyze the effects of SoS variations in three-dimensional hand-held tomographic acquisition geometries. An efficient graphics processing unit (GPU)-based reconstruction framework is further proposed to mitigate the SoS-related image quality degradation without compromising the high-frame-rate volumetric imaging performance of the method, essential for real-time visualization during hand-held scans.
参考文献

[1] Dean-Ben X L, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light, Science & Applications, 2014,3(1): e137

[2] Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Real-time handheld multispectral optoacoustic imaging. Optics Letters, 2013, 38(9): 1404-1406

[3] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nature Photonics, 2015, 9 (4): 219-227

[4] Wang L V, Yao J. A practical guide to photoacoustic tomography in the life sciences. Nature Methods, 2016, 13(8): 627-638

[5] Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton N C, Sardella T C, Claussen J, Poeppel T D, Bachmann H S, Roesch A, Griewank K, Schadendorf D, Gunzer M, Klode J. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Science Translational Medicine, 2015, 7(317): 317ra199

[6] Deán-Ben X L, Mer ep E, Razansky D. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues. Applied Physics Letters, 2017, 110(20): 203703

[7] Kim C, Erpelding T N, Jankovic L, PashleyMD,Wang L V. Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. Biomedical Optics Express, 2010, 1(1): 278-284

[8] Fronheiser M P, Ermilov S A, Brecht H P, Conjusteau A, Su R, Mehta K, Oraevsky A A. Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature. Journal of Biomedical Optics, 2010, 15(2): 021305

[9] iras D, Grijsen C, Schütte P, Steenbergen W, Manohar S. Photoacoustic needle: minimally invasive guidance to biopsy. Journal of Biomedical Optics, 2013, 18(7): 070502

[10] Deán-Ben X L, Razansky D. On the link between the speckle free nature of optoacoustics and visibility of structures in limited-view tomography. Photoacoustics, 2016, 4(4): 133-140

[11] Neuschmelting V, Burton N C, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher M F. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics, 2016, 4(1): 1-10

[12] Mercep E, Dean Ben X L, Razansky D. Combined pulse-echo ultrasound and multispectral optoacoustic tomography with a multisegment detector array. IEEE Transactions on Medical Imaging, 2017, doi: 10.1109/TMI.2017.2706200

[13] Deán-Ben X L, Ntziachristos V, Razansky D. Artefact reduction in optoacoustic tomographic imaging by estimating the distribution of acoustic scatterers. Journal of Biomedical Optics, 2012, 17(11): 110504

[14] Deán-Ben X L, Ma R, Rosenthal A, Ntziachristos V, Razansky D. Weighted model-based optoacoustic reconstruction in acoustic scattering media. Physics in Medicine and Biology, 2013, 58(16): 5555-5566

[15] Treeby B E. Acoustic attenuation compensation in photoacoustic tomography using time-variant filtering. Journal of Biomedical Optics, 2013, 18(3): 036008

[16] Huang C, Nie L, Schoonover R W, Wang L V, Anastasio M A. Photoacoustic computed tomography correcting for heterogeneity and attenuation. Journal of Biomedical Optics, 2012, 17(6): 061211

[17] Deán-Ben X L, Razansky D, Ntziachristos V. The effects of acoustic attenuation in optoacoustic signals. Physics in Medicine and Biology, 2011, 56(18): 6129-6148

[18] Modgil D, Anastasio M A, La Rivière P J. Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation. Journal of Biomedical Optics, 2010, 15(2): 021308

[19] Deán-Ben X L, Ntziachristos V, Razansky D. Effects of small variations of speed of sound in optoacoustic tomographic imaging. Medical Physics, 2014, 41(7): 073301

[20] Wurzinger G, Nuster R, Paltauf G. Combined photoacoustic, pulseecho laser ultrasound, and speed-of-sound imaging using integrating optical detection. Journal of Biomedical Optics, 2016, 21(8): 086010

[21] Haltmeier M, Nguyen L V. Analysis of iterative methods in photoacoustic tomography with variable sound speed. SIAM Journal on Imaging Sciences, 2017, 10(2): 751-781

[22] Li L, Zhu L R, Ma C, Lin L, Yao J J,Wang L D, Maslov K, Zhang R Y, Chen W Y, Shi J H, Wang L V. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nature Biomedical Engineering, 2017, 1(5): Art. No. 0071

[23] Treeby B E, Cox B T. k-wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. Journal of Biomedical Optics, 2010, 15(2): 021314

[24] Huang C, Wang K, Nie L, Wang L V, Anastasio M A. Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. IEEE Transactions on Medical Imaging, 2013, 32(6): 1097-1110

[25] Szabo T L. Diagnostic ultrasound imaging inside out. Burlington, MA: Elsevier Academic Press, 2004, p. xxii, 549 p

[26] Jose J,Willemink R G, Resink S, Piras D, van Hespen J C, Slump C H, Steenbergen W, van Leeuwen T G, Manohar S. Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption. Optics Express, 2011, 19(3): 2093-2104

[27] Xia J, Huang C, Maslov K, Anastasio M A, Wang L V. Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. Optics Letters, 2013, 38(16): 3140-3143

[28] Treeby B E, Varslot T K, Zhang E Z, Laufer J G, Beard P C. Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach. Journal of Biomedical Optics, 2011, 16(9): 090501

[29] Mandal S, Nasonova E, Deán-Ben X L, Razansky D. Optimal selfcalibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging. Photoacoustics, 2014, 2(3): 128-136

[30] Deán-Ben X L, Fehm T F, Gostic M, Razansky D. Volumetric handheld optoacoustic angiography as a tool for real-time screening of dense breast. Journal of Biophotonics, 2016, 9(3): 253-259

[31] Deán-Ben X L, Ozbek A, Razansky D. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Transactions on Medical Imaging, 2013, 32(11): 2050-2055

[32] Xu M, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(1 Pt 2): 016706

[33] Deán-Ben X L, Razansky D. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Optics Express, 2013, 21(23): 28062-28071

[34] Peli E. Contrast in complex images. Journal of the Optical Society of America A, Optics and Image Science, 1990, 7(10): 2032-2040

X. Luís DEáN-BEN, Ali OZBEK, Daniel RAZANSKY. Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging[J]. Frontiers of Optoelectronics, 2017, 10(3): 280. X. Luís DEáN-BEN, Ali OZBEK, Daniel RAZANSKY. Accounting for speed of sound variations in volumetric hand-held optoacoustic imaging[J]. Frontiers of Optoelectronics, 2017, 10(3): 280.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!