人工晶体学报, 2020, 49 (4): 659, 网络出版: 2020-06-15   

A2BNiX6型双钙钛矿分子光电性质的第一性原理研究

First-principles Study on Optical and Electronic Properties of A2BNiX6 Double Perovskite
作者单位
中国石油大学(北京)理学院,北京市油气光学探测技术重点实验室,北京 102249
摘要
A2BB′X6型双钙钛矿分子材料由于其结构稳定、性质优异、成本低廉等优点受到了人们的广泛关注,具有无毒、环境稳定性高等特点,同时也成为目前太阳能电池研究领域的热点。为了筛选优质的双钙钛矿分子,本文采用密度泛函理论设计了10种A2BNiX6型双钙钛矿分子。研究了分子的结构稳定性、电子性质和光学性质,分析了不同位置的元素对其能带和光学性质的影响。研究结果表明,A2BNiX6型双钙钛矿都是直接带隙,非常有利于可见光的吸收。尤其是X位置为F原子的A2BNiF6的4种双钙钛矿带隙值为1.52~1.69 eV,非常适合作为光吸收材料。光学性质研究表明,A2BNiF6双钙钛矿是一种透明材料,在透明发光材料方面具有广泛的应用前景。尽管相对于杂化泛函存在一定误差,但这些研究为双钙钛矿太阳能电池的吸光材料提供了理论支持。
Abstract
A2BB′X6 double perovskite become a hot spot and attract wide attention due to their stable structure, non-toxic, excellent properties, and low cost in solar cells field. In order to screen excellent double perovskite molecules, ten A2BNiX6 molecules with density functional theory were designed in this work. The structure stability, electronic and optical properties of these molecules were studied and their effects of elements at different positions on energy bands and optical properties were analyzed. The research results show that all the A2BNiX6 double perovskite were direct band gap semiconductors, which was to the benefit of the absorption of visible light. In particular, the band gap of four types of double perovskite of A2BNiF6 whose X position was F atom were 1.52-1.69 eV, which was very suitable as a light absorbing material. Optical properties research show that A2BNiF6 double perovskite are a transparent material and have a wide range of application prospects in transparent luminescent materials. Although there are some errors relative to hybrid functional, these studies provide theoretical support for light-absorbing materials for double perovskite solar cells.
参考文献

[1] 柴 磊,钟 敏.钙钛矿太阳能电池近期进展[J].物理学报,2016,65:237902.

[2] 潘 彬,朱义州,邱昌娟,等.含苯并噻二唑的吩噻嗪染料分子的设计合成及其在染料敏化太阳能电池中的应用[J].化学学报,2018,76:215.

[3] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society,2009,131:6050-6051.

[4] Juan-Pablo Correa-Baena, Michael Saliba, Tonio Buonassisi, et al. Promises and challenges of perovskite solar cells[J].Science,2017,358(6364):739-744.

[5] Kim H S, Seo J Y, Park N G. Material and device stability in perovskite solar cells[J].Chem.Sus.Chem.,2016,9(18):2528-2540.

[6] Feliciano Giustino, Henry J. Toward lead-free perovskite solar cells[J]. ACS Energy Letters,2016,1(6):1233-1240.

[7] Etgar L, Gao P, Xue Z S, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society,2012,134(42):17396-17399.

[8] Liu M Z, Johnston M B, Snaith H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J].Nature,2013,501:395-398.

[9] Peng Gao, Michael Grtzel,Mohammad K, et al.Organohalide lead perovskites for photovoltaic applications[J].Energy Environ.Sci,2014,7:2448.

[10] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J].Nature Photon.,2014,8:506.

[11] Tomas Leijtens, Tommaso Giovenzana, Severin N. Habisreutinger. Hydrophobic organic hole transporters for improved moisture resistance in metal halide perovskite solar cells[J]. ACS Appl.Mater.Interfaces 2016,8:5981.

[12] Li X D, Wang Y C, Zhu L P, et al. Improving efficiency and reproducibility of perovskite solar cells through aggregation control in polyelectrolytes hole transport layer[J]. ACS Appl.Mater.Interfaces,2017,9(37):31357-31361.

[13] 王福芝,谭占鳌,戴松元,等.平面异质结有机-无机杂化钙钛矿太阳电池研究进展[J].物理学报,2015,64(3):038401.

[14] 陈薪羽,解俊杰,王 炜,等.钙钛矿材料组分调控策略及其光电器件性能研究进展[J].化学学报,2019,77(1):9.

[15] Luo Z Z, Xian Y Z, Xiong W Z, et al. Hole-transporting layer based on a conjugated polyelectrolyte with organic cations enables efficient inverted perovskite solar cells[J].Nano Energy,2019,57:248.

[16] Feng L W, Gen C, Xiao H L, et al. Advanced electrocatalytic performance of Ni-based materials for oxygen evolution reaction[J].ACS Sustainable Chemistry & Engineering,2019 7: 341-349.

[17] 罗 成,沈百荣,方志刚,等. Ni-B非晶态合金局域结构和电荷转移性质的理论研究[J].化学学报,2000,化学学报,58:8.

[18] Hao Z, Ke C L, Rui Q L, et al. Design, Synthesis and herbicidal activities of tetrahydroisoindoline-1,3-dione derivatives containing alkoxycarbonyl substituted 2-benzoxazolinone[J].Chinese Journal of Inorganic Chemistry,2015,31(8):1571-1580.

[19] Kevin M. Schmidt, Robert J. Koch, Scott T. Misture, et al.Phase stability analysis of ternary alkaline-earth hexaborides:insights from DFT calculations[J].ACS Applied Electronic Materials,2019,1(1):105-112.

[20] Zhang S L, Hu Y H, Hu Z Y, et al.Hydrogenated arsenenes as planar magnet and Dirac material[J].Applied Physics Letters,2015,107(2):022102.

[21] Sidney E Creutz, Evan N Crites, Michael C De Siena, et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors:synthesis and anion exchange to access new materials[J].Nano Letters,2018,2:1118-1123.

[22] George Volonakis, Amir Abbas Haghighirad, Rebecca L Milot, et al. Cs2InAgCl6:a new lead-free halide double perovskite with direct band Gap[J].Phys. Chem.Lett,2017,8:772.

[23] Ralf G Niemann, Laxman Gouda, Jiangang Hu, et al. Cs+ incorporation into CH3NH3PbI3perovskite:substitution limit and stability enhancement[J].Mater.Chem.A,2016,4:17819.

[24] Matthew T, Klug, Anna Osherov, Amir A. Haghighirad,et al.Tailoring metal halide perovskites through metal substitution:influence on photovoltaic and material properties[J].Energy Environ.Sci.2017,10:236.

[25] Abhishek Swarnkar, Wasim J, Mir, Angshuman Nag, et al.Can B-Site doping or alloying improve thermal- and phase-stability of all-inorganic CsPbX3 (X=Cl, Br, I) Perovskites?[J].ACS Energy Lett,2018,3:286.

[26] George Volonakis, Feliciano Giustino. Surface properties of lead-free halide double perovskites:possible visible-light photo-catalysts for water splitting[J].Appl.Phys.Lett,2018,112:243901.

[27] Jia J L, Xiao M W, Shun R L, et al.Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature,2018,563:541.

[28] Gregor Kieslich, Shijing Sun, Anthony K. Cheetham. An extended tolerance factor approach for organic-inorganic perovskites[J].Chem.Sci.,2015,6:3430-3433.

[29] Zhen L, Meng J Y, Ji-Sang Park, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead Iodide solid-state alloys[J]. Chem.Mater,2016,28,1:284-292.

[30] Christopher J. Bartel, Christopher Sutton, Bryan R. Goldsmith, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J].Science Advances,2018,1801:07700.

[31] Sheng L Z, Zhong Y, Ya F L, et al. Atomically thin arsenene and antimonene:semimetal-semiconductor and indirect-direct band-gap transitions[J].Angew.Chem.Int.Ed.,2015,54(10):3112-3115.

[32] Zhao X G, Yang D W , Ren J C, et al. Rational design of halide double perovskites for optoelectronic applications[J].Joule,2018,2,9:1662-1673.

[33] K.C.Bhamu, Amit Soni, Jagrati Sahariya. Revealing optoelectronic and transport properties of potential perovskites Cs2PdX6 (X=Cl, Br): A probe from density functional theory (DFT)[J].Solar Energy,2018,162(1):336-343.

[34] Zhou J, Xia Z G, Maxim S. Molokeev, et al. Composition design, optical gap and stability investigations of lead-free halide double perovskite Cs2AgInCl6[J].Mater.Chem.A,2017,5:15031-15037.

[35] Marina R. Filip, Xinlei Liu, Anna Miglio, et al. Phase diagrams and stability of lead-free halide double perovskites Cs2BB′X6∶B=Sb and Bi, B′=Cu, Ag, and Au, and X=Cl, Br, and I[J].The Journal of Physical Chemistry C,2018,122(1):158-170.

[36] Gencai Pan, Xue Bai, Dongwen Yang, et al. Doping lanthanide into perovskite nanocrystals:highly improved and expanded optical properties[J]. Nano Letters,2017,17(12):8005-8011

[37] Javad Shamsi, Alexander S. Urban, Muhammad Imran, et al. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties[J]. Chemical Reviews,2019,119(5):3296-3348.

[38] Yan N, Yin H F, Wang Z W, et al. Role of ammonium derivative ligands on optical properties of CH3NH3PbBr3 perovskite nanocrystals[J]. Langmuir,2019,35(47):15151-15157.

[39] Matthew J. Jurow, Thomas Morgenstern, Carissa Eisler, et al. Manipulating the transition dipole moment of CsPbBr3 perovskite nanocrystals for superior optical properties[J]. Nano Letters,2019,19(4):2489-2496.

[40] Tom C. Jellicoe, Johannes M. Richter, Hugh F. J. Glass, et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals[J].Journal of the American Chemical Society,2016,138(9):2941-2944.

[41] Evan T. Vickers, Ke Xu, Benjamin W, et al. Ligand dependent growth and optical properties of hybrid organo-metal halide perovskite magic sized clusters[J].The Journal of Physical Chemistry C,2019,123(30):18746-18752.

[42] Zhang W X, Lin Z X, Rui Huang, et al.Effect of phase transition on optical properties and photovoltaic performance in cesium lead bromine perovskite:a theoretical study[J].Phys.Chem.C 2019,123(34):20764-20768.

林春丹, 张艳超, 赵玉莹, 杨振清, 张万松, 邵长金. A2BNiX6型双钙钛矿分子光电性质的第一性原理研究[J]. 人工晶体学报, 2020, 49(4): 659. LIN Chundan, ZHANG Yanchao, ZHAO Yuying, YANG Zhenqing, ZHANG Wansong, SHAO Changjin. First-principles Study on Optical and Electronic Properties of A2BNiX6 Double Perovskite[J]. Journal of Synthetic Crystals, 2020, 49(4): 659.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!