光子学报, 2016, 45 (9): 0927002, 网络出版: 2016-10-19  

纯消相干对量子点-微腔激射性质的影响

Research on the Lasing Performance of a Quantum Dot-Microcavity System with Pure Dephasing
陈幸 1,*秦利国 1王琴 1,2,3
作者单位
1 南京邮电大学 信号处理传输院, 南京 210003
2 南京邮电大学 宽带无线通信与传感网技术重点实验室, 南京 210003
3 中国科学技术大学 量子信息重点实验室, 合肥 210000
摘要
应用量子主方程理论研究量子点-微腔耦合系统的激射性质.分别探索了不同类型的微腔耦合系统(“好的系统”、“中等系统”)在外加泵浦场的作用下表现出的激射现象. 分析比较了失谐大小及环境纯消相干对这两种微腔耦合系统的内部特性(光场分布、腔内光子数等)产生的影响.数值仿真表明:对于“好的系统”, 在失谐量不大的情况下, 引入适当的纯消相干有利于提高耦合系统的激射性能; 对于“中等系统”, 由于失谐条件下光子在腔内集聚困难, 因而很难达到激射, 但是通过引入适量的纯消相干可以对腔内光场分布和光子数产生剧烈调制作用. 该结果对于研究单量子点激光器, 以及探索光与物质相互作用等方面具有指导作用.
Abstract
By employing the Master Equation theory, the lasing properties of the quantum dot-microcavity coupling system were studied. For different types of coupling systems, i.e., “good system” and “more realistic system”, their lasing phenomenon under external pump field were investigated individually. Moreover, the influence of the detuning and the pure dephasing on internal characteristics of the coupling system, such as its second-order correlation function at zero time delay or the number of photons in cavities was analyzed. The numerical simulations show that, for a “good system”, when the detuning between a quantum dot and a cavity is not very large, the certain pure dephasing can improve the lasing properties of the coupled system; for a “more realistic system”, due to the difficulty of photon gathering in a cavity under off-resonant conditions, it is very hard to observe the lasing phenomenon. However, the pure dephasing will still play an important role on modulating the light field and the photon numbers in the cavity. These results may play positive effects on some research either on lasing with the single quantum dot, or modulating the interaction between light and matter etc.
参考文献

[1] LEDENTSOV N N, SHCHUKIN V A, et al. Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth[J]. Physical Review B, 1996, 54(12): 8743-8750.

[2] NOMURA M, IWAMOTO S, WATANABE K, et al. Room temperature continuous-wave lasing in photonic crystal nanocavity[J]. Optics Express, 2002, 14(13): 6308-6315.

[3] MABUCHI H, DOHERTY A C. Cavity quantum electrodynamics: coherence in context[J]. Science, 2002, 298(5597): 1372-1377.

[4] SUFFCZYNSKI J, DOUSSE A, GAUTHRON K, et al. Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems[J]. Physical Review Letters, 2009, 103(2): 027401.

[5] WINGER M, VOLZ T, TAREL G, et al. Explanation of photo correlations in the far-off-resonance optical emission from a quantum dot-cavity system[J]. Physical Review Letters, 2009, 103(20): 207403.

[6] NOMURA M, KUMAGAI N, IWAMOTO S, et al. Laser oscillation in a strongly coupled single quantum dot-nanocavity system[J]. Nature Physics, 2010, 6(4): 279-283.

[7] PELTON M, YAMAMOTO Y. Ultralow threshold laser using a single quantum dot and a microsphere cavity[J]. Physical Review A, 1999, 59(3):2418-2421.

[8] STRAUF S, HENNESSY K, RAKHER M T, et al. Self-tuned quantum dot gain in photonic crystal lasers[J]. Physical Review Letters, 2006, 96(12): 127404.

[9] VALLE E, LAUSSY F P, TEJEDOR C. Luminescence spectra of quantum dots in microcavities. II. Fermions[J]. Physical Rewiew B. 2009, 79(23): 235326.

[10] KHITROVA G, GIBBS H M, KIRA M, et al. Vacuum Rabi splitting in semiconductors[J]. Nature. Physics, 2006, 2(2): 81-90.

[11] XIAO Y F , LIU Y C , LI B B, et al. Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator[J]. Physical Review A, 2012, 85(3): 031805.

[12] MAJUMDAR A, RUNDQUIST A, BAJCSY M, et al. Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule[J]. Physical Review B, 2012, 86(4): 045315.

[13] MULLER K, FISCHER K A, RUNDQUIST A, et al. Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems[J]. Physical Review X, 2015, 5(3): 03106.

[14] VEENA H I, REKHA M, ANSHU P. Low threshold quantum dot lasers[J]. The Journal of Physical Chemistry Letters, 2016, 7(7): 1244-1248.

[15] 陈翔, 米贤武. 量子点腔非谐振耦合系统纯退相干的特性及应用[J]. 光子学报, 2011, 40(5): 746-752.

    CHEN Xing, MI Xian-wu. Characteristics of pure dephasing on non-resonant quantum dot-cavity coupling system and its application prospect[J]. Acta Photonica Sinica, 2011, 40(5): 746-752.

[16] AUFFEVES A, GERACE D, GERARD J M, et al, Controlling the dynamics of a coupled atom-cavity system by pure dephasing[J]. Physical Review B, 2010, 81(24): 245419.

[17] UNSLEBER S, MCCUTCHEON D P S, DAMBACH M, et al. Two-photon interference from a quantum dot microcavity: Persistent pure dephasing and suppression of time jitter[J]. Physical Review B, 2015, 91(7): 075413.

[18] LIU Yong-Chun, LUAN Xing-Sheng, LI Hao-Kun, et al. Coherent polariton dynamics in coupled highly-dissipative cavity quantum electrodynamics[J]. Physical Review Letters, 2014, 112(21): 213602.

[19] 曹硕, 许秀来. 微腔增强发射的半导体量子点单光子源[J]. 物理, 2014, 43(11): 740-748.

    CAO Shuo, XU Xiu-lai. Microcavity enhanced single-photon emission from single semiconductor quantum dots[J]. Physics, 2014, 43(11): 740-748.

[20] 廖庆洪, 刘正东, 尤素萍, 等. 微腔中单量子点的受激辐射行为研究[J]. 光子学报, 2008, 37(5): 883-886.

    LIAO Qing-hong, LIU Zheng-dong, YOU Su-ping, et al. Stimulated emission behavior of single quantum dot in microcavity[J]. Acta Photonica Sinica, 2008, 37(5): 883-886.

[21] SUKUMAR C V, BUCK B. Multi-Phonon generalization of the Jaynes-Cummings model[J]. Physics Letters A, 1981, 83(5): 211-233.

[22] CHUMAKOV S M, KOZIEROWSKI M, SANCHEZMONDRAGON J J. Analytical approach to the photon statistics in the thermal Jaynes-Cummings model with an initially unexcited atom[J]. Physical Review A, 1993, 48(6): 4594-4597.

[23] 许海鑫, 王海龙, 严进一, 等.InAs/GaAs量子点激光器的增益和线宽展宽因子[J].发光学报, 2015, 36(5):567-571.

    XU Hai-xin, WANG Hai-long, YAN Jin-yi, et al. Gain and linenidth enhancement factor of InAs/GaAs quantum-dot laser diodes[J]. Chinese Journal of Luminescence, 2015, 36(5): 567-571.

[24] KARLOVICH T B, KILIN S Y. Auto-and cross-correlation functions of a one-atom laser in a regime of strong coupling[J]. Optics and Spectroscopy, 2007, 103(2): 280-290.

[25] KARLOVICH T B, KILIN S Y. Fluorescence spectrum of a one-atom laser in the strong-coupling regime[J]. Laser Physics, 2008, 18(6): 783-789.

[26] NAESBY A, SUHR T, KRISTENSEN P T, et al. Influence of pure dephasing on emission spectra from single photon sources[J]. Physical Review A, 2008, 78(4): 045802.

[27] AUFFEVES A, GERARD J M, POIZAT J P. Pure emitter dephasing: A resource for advanced solid-state single-photon sources[J]. Physical Review A, 2009, 79(5): 053838.

[28] KAER P, GREGERSEN N, MORK J. The role of phonon scattering in the indistinguishability of photons emitted from semiconductor cavity QED systems[J]. New Journal of physics, 2013, 15: 035027.

[29] KAER P, LODAHL P, JAUHO A P, et al. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence[J]. Physical Review B, 2013, 87(8): 081308.

[30] KAER P, MORK J. Decoherence in semiconductor cavity QED systems due to phonon couplings[J]. Physical Review B, 2014, 90(3): 035312.

陈幸, 秦利国, 王琴. 纯消相干对量子点-微腔激射性质的影响[J]. 光子学报, 2016, 45(9): 0927002. CHEN Xing, QIN Li-guo, WANG Qin. Research on the Lasing Performance of a Quantum Dot-Microcavity System with Pure Dephasing[J]. ACTA PHOTONICA SINICA, 2016, 45(9): 0927002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!