中国激光, 2014, 41 (11): 1105001, 网络出版: 2014-10-08   

1 kW单端抽运、高光束质量、高稳定性全光纤激光振荡器 下载: 547次

1 Kilowatt Single-End Pumped All-Fiber Laser Oscillator with Good Beam Quality and High Stability
作者单位
国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
摘要
与光纤放大器相比,光纤激光振荡器具有结构紧凑、稳定性好、模式不稳定性阈值高、光束质量优良等优点。对单端抽运的1 kW级全光纤激光振荡器进行了详细的理论和实验研究。建立了考虑光纤弯曲、模式耦合、抽运波长变化、包层光滤除的速率方程模型;利用国产合束器,搭建了单端抽运全光纤振荡器,在抽运功率为1.5 kW时,获得1.04 kW功率输出,光光效率为69%。对不同输出功率的光束质量进行测量,光束质量M2均小于1.25。激光器稳定工作1 h,功率起伏小于1%。
Abstract
Compared with fiber amplifier, fiber laser oscillator has the advantages of compact structure, good stability, high threshold of mode instability and good beam quality. Single-end pumped 1 kW all fiber laser oscillator is studied in detail theoretically and experimentally. Rate equation model which considers the fiber bending loss, mode coupling, changing pumping wave and cladding lights stripping is presented. Using a China made combiner, a single-end pumped all fiber laser oscillator is built. Laser power of 1.04 kW and optical to optical efficiency of 69% are obtained when the pump power reaches to 1.5 kW. The beam quality is measured and the results show that the M2 factors are all less than 1.25 in different powers. With one hour steady laser operation, the power fluctuation is less then 1%.
参考文献

[1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives[J]. J Opt Soc Am B, 2010, 27(11): B63-B92.

[2] Photonics I. IPG Photonics Successfully Tests World′s First 10 Kilowatt Single-Mode Production Laser[EB/OL]. 2009, http://www.ipgphotonics.com/Collateral/Documents/English-US/PR_Final_10kW_SM_laser.pdf.

[3] 代守军, 何兵, 周军. 1.5 kW近单模全光纤激光器[J]. 中国激光, 2013, 40(7): 0702001.

    Dai Shoujun, He Bing, Zhou Jun, et al.. 1.5 kW near single-mode all-fiber laser[J]. Chinese J Lasers, 2013, 40(7): 0702001.

[4] 闫平, 肖起榕, 付晨, 等. 1.6 kW全光纤掺镱激光器[J]. 中国激光, 2012, 39(4): 0416001.

    Yan Ping, Xiao Qirong, Fu Chen, et al.. 1.6 kW ytterbium doped all-fiber laser[J]. Chinese J Lasers, 2012, 39(4): 0416001.

[5] Smith A V, Smith J J. Mode instability in high power fiber amplifiers[J]. Opt Express, 2011, 19(11): 10180-10192.

[6] Jauregui C, Eidam T, Limpert J, et al.. Impact of modal interference on the beam quality of high-power fiber amplifiers[J]. Opt Express, 2011, 19(4): 3258-3271.

[7] Hansen K R, Alkeskjold T T, Broeng J, et al.. Theoretical analysis of mode instability in high-power fiber amplifiers[J]. Opt Express, 2013, 21(2): 1944-1971.

[8] Haarlammert N, de Vries O, Liem A, et al.. Build up and decay of mode instability in a high power fiber amplifier[J]. Opt Express, 2012, 20(12): 13274-13283.

[9] Jauregui C, Eidam T, Otto H, et al.. Physical origin of mode instabilities in high-power fiber laser systems[J]. Opt Express, 2012, 20(12): 12912-12925.

[10] 陶汝茂, 王小林, 肖虎, 等. 高功率光纤放大器中模式不稳定阈值功率的理论研究[J]. 光学学报, 2014, 34(1): 0114001.

    Tao Rumao, Wang Xiaolin, Xiao Hu, et al.. Theoretical study of the threshold power of mode instability in high-power fiber amplifier[J]. Acta Optica Sinica, 2014, 34(1): 0114001.

[11] 陶汝茂, 周朴, 肖虎, 等. 高功率光纤激光中模式不稳定性现象研究进展[J]. 激光与光电子学进展, 2014, 51(2): 020001.

    Tao Rumao, Zhou Pu, Xiao Hu, et al.. Progress of study on mode instability in high power fiber amplifiers[J]. Laser & Optoelectronics Progress, 2014, 51(2): 020001.

[12] Mohammed W, Gu X. Fiber Bragg grating in large-mode-area fiber for high power fiber laser applications[J]. Appl Opt, 2010, 49(28): 5297-5301.

[13] Teraxion Inc.. PWS-HPR-Reflector for High-Power Fiber Lasers[EB/OL]. 2013, http://www.teraxion.com/images/stories/pdf/MKT-FTECH-PWS-HPR_201306-3.0.pdf.

[14] Gong M, Yuan Y, Li C, et al.. Numerical modeling of transverse mode competition in strongly pumped multimode fiber lasers and amplifiers[J]. Opt Express, 2007, 15(6): 3236-3246.

[15] Kelson I, Hardy A. Optimization of strongly pumped fiber lasers[J]. J Lightwave Technol, 1999, 17(5): 891-897.

[16] Yong W, Hong P. Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification[J]. J Lightwave Technol, 2003, 21(10): 2262-2270.

[17] Kelson I, Hardy A A. Strongly pumped fiber lasers[J]. IEEE J Quantum Electron, 1998, 34(9): 1570-1577.

[18] Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE J Quantum Electron, 2007, 43(10): 899-909.

[19] O G Okhotnikov. Fiber Lasers[M]. Weinheim, Germany: Wiley-VCH, 2012.

[20] T Eidam, C Wirth, C Jauregui, et al.. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Opt Express, 2011, 19(14): 13218-13224.

[21] C Wirth, T Schreiber, M Rekas, et al.. High-power linear-polarized narrow linewidth photonic crystalfiber amplifier[C]. SPIE, 2010, 7580: 75801.

王小林, 陶汝茂, 张汉伟, 周朴, 许晓军. 1 kW单端抽运、高光束质量、高稳定性全光纤激光振荡器[J]. 中国激光, 2014, 41(11): 1105001. Wang Xiaolin, Tao Rumao, Zhang Hanwei, Zhou Pu, Xu Xiaojun. 1 Kilowatt Single-End Pumped All-Fiber Laser Oscillator with Good Beam Quality and High Stability[J]. Chinese Journal of Lasers, 2014, 41(11): 1105001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!