光学技术, 2023, 49 (6): 699, 网络出版: 2023-12-05  

Bishop标架螺旋多芯光纤三维位形重构方法研究

Research on 3D reconstruction method of helical multicore optical fiber based on bishop frame
刘金方 1,2,*周康鹏 1,2赵昊 1,2张兴硕 1,2孙广开 1,2
作者单位
1 北京信息科技大学 光电测试技术及仪器教育部重点实验室, 北京 100192
2 北京信息科技大学 光纤传感与系统北京实验室, 北京 100016
摘要
针对多芯光纤三维位型重构问题,提出了一种基于螺旋多芯光纤和Bishop标架的三维位形重构方法。分析了基于螺旋多芯光纤和Bishop标架的三维位形重构算法原理,实验采用了螺旋多芯光纤布拉格光栅(Fiber Bragg gating,FBG)阵列传感,通过光谱漂移计算各个纤芯的应变值,并根据节点截面应变关系模型实现了纤芯曲率和扭转角解算,最后,结合Bishop迭代计算得到光纤整体位形,实现了形状重构。进行了4种形状的重构实验,最大三维重构绝对误差为3.11mm。实验结果表明,基于Bishop-HMCF的形状重构方法能够实现三维位形重构,在柔性机构末端定位和导航上具有重要的研究意义与应用价值。
Abstract
Aiming at the problem of three-dimensional shape reconstruction of multi-core optical fiber, a three-dimensional shape reconstruction method based on helical multi-core optical fiber and Bishop frame is proposed. The principle of 3D position reconstruction method based on HMCF and Bishop frame was analyzed. The Fiber Bragg grating (FBG) array sensing was used to calculate the strain of each fiber core through spectral drift. The core curvature and torsion angle solution were calculated according to the node section strain relationship model. Four shape reconstruction experiments were carried out, and the maximum absolute error of 3D reconstruction was 3.11mm. The experimental results show that the shape reconstruction method based on Bishop-HMCF can realize 3D shape reconstruction, which has important research significance and application value in the end positioning and navigation of flexible mechanism.
参考文献

[1] Park Y L, Elayaperumal, S, Daniel, et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions on Mechatronics,2010,15(6):906-915.

[2] Boctor E M, Choti M A, Burdette E C, et al. Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation[J]. International Journal of Medical Robotics and Computer Assisted Surgery,2008,4(2):180-191.

[3] Su X, Zhang Q. Dynamic 3-D shape measurement method: A review[J]. Optics and Lasers in Engineering,2010,48(2):191-204.

[4] Amanzadeh M, Aminossadati S M, Kizil M S, et al. Recent developments in fibre optic shape sensing[J]. Measurement,2018,128:119-137.

[5] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering,2010,48(2):149-158.

[6] Dementyev A, Kao H L, Paradiso J A. SensorTape: modular and programmable 3D-aware dense sensor network on a tape[C]∥ Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology, Charlotte, NC, United states:UIST 2015,2015:649-658.

[7] A D K, M A D. Fiber grating sensors[J]. Journal of Lightwave Technology: A Joint IEEE/OSA Publication,1997,15(8):1442-1463.

[8] Othonos A, Kalli K, Kohnke G E. Fiber bragg gratings: fundamentals and applications in telecommunications and sensing[J]. Physics Today,2000,53(5):61-62.

[9] Tan F, Liu Z, Tu J, et al. Torsion sensor based on inter-core mode coupling in seven-core fiber[J]. Optics Express,2018,26(16):19835-19844.

[10] Khan F, Denasi A, Barrera D, et al. Multi-core optical fibers with bragg gratings as shape sensor for flexible medical instruments[J]. IEEE Sensors Journal,2019,19(14):5878-5884.

[11] Zhang H, Wu Z, Shum P P, et al. Directional torsion and temperature discrimination based on a multicore fiber with a helical structure[J]. Opt Express,2018,26(1):544-551.

[12] Floris I, Madrigal J, Sales S, et al. Twisting compensation of optical multicore fiber shape sensors for flexible medical instruments[C]. Progress in Biomedical Optics and Imaging-Proceedings of SPIE San Francisco, CA, United states: SPIE,2020,11233.

[13] Floris I, Madrigal J, Sales S, et al. Twisting measurement and compensation of optical shape sensor based on spun multicore fiber[J]. Mechanical Systems & Signal Processing,2020,140(6):106700.1-106700.9.

[14] Carroll D, Kose E, Sterling I. Improving frenet's frame using bishop's frame: journal of mathematics research[J]. Journal of Mathematics Research,2013,5(4):97-106.

[15] Khan F, Donder A, Galvan S, et al. Pose measurement of flexible medical instruments using fiber bragg gratings in multi-core fiber[J]. IEEE Sensors Journal,2020,20(18):10955-10962.

刘金方, 周康鹏, 赵昊, 张兴硕, 孙广开. Bishop标架螺旋多芯光纤三维位形重构方法研究[J]. 光学技术, 2023, 49(6): 699. LIU Jinfang, ZHOU Kangpeng, ZHAO Hao, ZHANG Xingshuo, SUN Guangkai. Research on 3D reconstruction method of helical multicore optical fiber based on bishop frame[J]. Optical Technique, 2023, 49(6): 699.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!