中国激光, 2018, 45 (5): 0502005, 网络出版: 2018-05-02  

高斯模激光冲击钛合金薄壁件应力场的演变机制 下载: 664次

Evolution Mechanism of Residual Stress Field in Gaussian Laser Shocking of Titanium Alloy Thin-Wall Workpieces
作者单位
1 中国科学院沈阳自动化研究所装备制造技术研究室, 辽宁 沈阳 110016
2 中国科学院大学, 北京 100049
引用该论文

孙博宇, 乔红超, 赵吉宾, 陆莹, 胡太友. 高斯模激光冲击钛合金薄壁件应力场的演变机制[J]. 中国激光, 2018, 45(5): 0502005.

Sun Boyu, Qiao Hongchao, Zhao Jibin, Lu Ying, Hu Taiyou. Evolution Mechanism of Residual Stress Field in Gaussian Laser Shocking of Titanium Alloy Thin-Wall Workpieces[J]. Chinese Journal of Lasers, 2018, 45(5): 0502005.

参考文献

[1] 王续跃, 王彦飞, 江豪, 等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光, 2014, 41(1): 0103006.

    王续跃, 王彦飞, 江豪, 等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光, 2014, 41(1): 0103006.

    Wang X Y, Wang Y F, Jiang H, et al. Laser cladding forming of round thin-walled parts with slope angle[J]. Chinese Journal of Lasers, 2014, 41(1): 0103006.

    Wang X Y, Wang Y F, Jiang H, et al. Laser cladding forming of round thin-walled parts with slope angle[J]. Chinese Journal of Lasers, 2014, 41(1): 0103006.

[2] 刘月, 鲁金忠, 罗开玉, 等. 升温条件下激光冲击强化对工业纯钛拉伸性能和断口形貌的影响[J]. 中国激光, 2016, 43(9): 0902005.

    刘月, 鲁金忠, 罗开玉, 等. 升温条件下激光冲击强化对工业纯钛拉伸性能和断口形貌的影响[J]. 中国激光, 2016, 43(9): 0902005.

    Liu Y, Lu J Z, Luo K Y, et al. Effect of laser shock processing on tensile property and fracture morphology of CP-Ti under elevated temperature condition[J]. Chinese Journal of Lasers, 2016, 43(9): 0902005.

    Liu Y, Lu J Z, Luo K Y, et al. Effect of laser shock processing on tensile property and fracture morphology of CP-Ti under elevated temperature condition[J]. Chinese Journal of Lasers, 2016, 43(9): 0902005.

[3] Hua Y Q, Rong Z, Ye Y X, et al. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy[J]. Applied Surface Science, 2015, 330: 439-444.

    Hua Y Q, Rong Z, Ye Y X, et al. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy[J]. Applied Surface Science, 2015, 330: 439-444.

[4] 孙浩, 朱颖, 郭伟, 等. 激光冲击强化对TC17钛合金残余应力及显微组织的影响[J]. 激光与光电子学进展, 2017, 54(4): 041405.

    孙浩, 朱颖, 郭伟, 等. 激光冲击强化对TC17钛合金残余应力及显微组织的影响[J]. 激光与光电子学进展, 2017, 54(4): 041405.

    Sun H, Zhu Y, Guo W, et al. Effect of laser shock peening on residual stress and microstructure of TC17 titanium alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041405.

    Sun H, Zhu Y, Guo W, et al. Effect of laser shock peening on residual stress and microstructure of TC17 titanium alloy[J]. Laser & Optoelectronics Progress, 2017, 54(4): 041405.

[5] Hu Y X, Yang R Y, Wang D Y, et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component[J]. Journal of Materials Processing Technology, 2018, 251: 197-204.

    Hu Y X, Yang R Y, Wang D Y, et al. Geometry distortion and residual stress of alternate double-sided laser peening of thin section component[J]. Journal of Materials Processing Technology, 2018, 251: 197-204.

[6] 罗开玉, 陈起, 吕刺, 等. 双面激光同时冲击AM50镁合金板料的厚度分析[J]. 中国激光, 2014, 41(1): 0103003.

    罗开玉, 陈起, 吕刺, 等. 双面激光同时冲击AM50镁合金板料的厚度分析[J]. 中国激光, 2014, 41(1): 0103003.

    Luo K Y, Chen Q, Lü C, et al. Thickness analysis of two-sided simultaneous laser shock processing on AM50 Mg alloy[J]. Chinese Journal of Lasers, 2014, 41(1): 0103003.

    Luo K Y, Chen Q, Lü C, et al. Thickness analysis of two-sided simultaneous laser shock processing on AM50 Mg alloy[J]. Chinese Journal of Lasers, 2014, 41(1): 0103003.

[7] Ivetic G, Meneghin I, Troiani E, et al. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering A, 2012, 534: 573-579.

    Ivetic G, Meneghin I, Troiani E, et al. Fatigue in laser shock peened open-hole thin aluminium specimens[J]. Materials Science and Engineering A, 2012, 534: 573-579.

[8] Zhang X Q, Li H, Duan S W, et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surface & Coatings Technology, 2015, 280: 163-173.

    Zhang X Q, Li H, Duan S W, et al. Modeling of residual stress field induced in Ti-6Al-4V alloy plate by two sided laser shock processing[J]. Surface & Coatings Technology, 2015, 280: 163-173.

[9] Lin B, Zabeen S, Tong J, et al. Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement[J]. Mechanics of Materials, 2015, 82: 78-90.

    Lin B, Zabeen S, Tong J, et al. Residual stresses due to foreign object damage in laser-shock peened aerofoils: Simulation and measurement[J]. Mechanics of Materials, 2015, 82: 78-90.

[10] Bhamare S, Ramakrishnan G, Mannava S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface & Coatings Technology, 2013, 232: 464-474.

    Bhamare S, Ramakrishnan G, Mannava S R, et al. Simulation-based optimization of laser shock peening process for improved bending fatigue life of Ti-6Al-2Sn-4Zr-2Mo alloy[J]. Surface & Coatings Technology, 2013, 232: 464-474.

[11] Hfaiedh N, Peyre P, Song H B, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489.

    Hfaiedh N, Peyre P, Song H B, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489.

[12] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

    Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[13] Kim J S, Nam H S, Kim Y J, et al. Numerical study of laser shock peening effects on alloy 600 nozzles with initial residual stresses[J]. Journal of Pressure Vessel Technology, 2017, 139(4): 041406.

    Kim J S, Nam H S, Kim Y J, et al. Numerical study of laser shock peening effects on alloy 600 nozzles with initial residual stresses[J]. Journal of Pressure Vessel Technology, 2017, 139(4): 041406.

[14] Zhang W W, Yao Y L, Noyan I C. Microscale laser shock peening of thin films, part 1: Experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 10-17.

    Zhang W W, Yao Y L, Noyan I C. Microscale laser shock peening of thin films, part 1: Experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 10-17.

[15] Zhang X Q, She J P, Li S Z, et al. Simulation on deforming progress and stress evolution during laser shock forming with finite element method[J]. Journal of Materials Processing Technology, 2015, 220: 27-35.

    Zhang X Q, She J P, Li S Z, et al. Simulation on deforming progress and stress evolution during laser shock forming with finite element method[J]. Journal of Materials Processing Technology, 2015, 220: 27-35.

[16] Hu Y X, Yao Z Q. Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd∶YAG pulsed laser[J]. Surface & Coatings Technology, 2008, 202(8): 1517-1525.

    Hu Y X, Yao Z Q. Overlapping rate effect on laser shock processing of 1045 steel by small spots with Nd∶YAG pulsed laser[J]. Surface & Coatings Technology, 2008, 202(8): 1517-1525.

[17] Qiao H C. Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J]. Applied Surface Science, 2015, 351: 524-530.

    Qiao H C. Experimental investigation of laser peening on Ti17 titanium alloy for rotor blade applications[J]. Applied Surface Science, 2015, 351: 524-530.

[18] 王宝林. 钛合金TC17力学性能及其切削加工特性研究[D]. 济南: 山东大学, 2013.

    王宝林. 钛合金TC17力学性能及其切削加工特性研究[D]. 济南: 山东大学, 2013.

    Wang BL. Study on the mechanical properties of titanium alloy TC17 and characteristics in machining[D]. Jinan: Shandong University, 2013.

    Wang BL. Study on the mechanical properties of titanium alloy TC17 and characteristics in machining[D]. Jinan: Shandong University, 2013.

[19] DingK, YeL. Laser shock peening: Performance and process simulation[M]. Boca Raton: CRC Press, 2006.

    DingK, YeL. Laser shock peening: Performance and process simulation[M]. Boca Raton: CRC Press, 2006.

[20] Wang Y N, Fan Y J, Kysar J W, et al. Microscale laser peen forming of single crystal[J]. Journal of Applied Physics, 2008, 103(6): 063525.

    Wang Y N, Fan Y J, Kysar J W, et al. Microscale laser peen forming of single crystal[J]. Journal of Applied Physics, 2008, 103(6): 063525.

[21] 李应红. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013.

    李应红. 激光冲击强化理论与技术[M]. 北京: 科学出版社, 2013.

    Li YH. The theory and technology of laser shock peening[M]. Beijing: Science Press, 2013.

    Li YH. The theory and technology of laser shock peening[M]. Beijing: Science Press, 2013.

[22] 马大猷, 沈峰. 声学手册[M]. 北京: 科学出版社, 2004.

    马大猷, 沈峰. 声学手册[M]. 北京: 科学出版社, 2004.

    Ma DY, ShenF. Acoustic manual[M]. Beijing: Science Press, 2004.

    Ma DY, ShenF. Acoustic manual[M]. Beijing: Science Press, 2004.

孙博宇, 乔红超, 赵吉宾, 陆莹, 胡太友. 高斯模激光冲击钛合金薄壁件应力场的演变机制[J]. 中国激光, 2018, 45(5): 0502005. Sun Boyu, Qiao Hongchao, Zhao Jibin, Lu Ying, Hu Taiyou. Evolution Mechanism of Residual Stress Field in Gaussian Laser Shocking of Titanium Alloy Thin-Wall Workpieces[J]. Chinese Journal of Lasers, 2018, 45(5): 0502005.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!