孙兰香 1,2,3,*王文举 1,4齐立峰 1,2,3陆莹 1,2,3[ ... ]汪为 1,2,3,5
作者单位
摘要
1 中国科学院沈阳自动化研究所机器人学国家重点实验室, 辽宁 沈阳 110016
2 中国科学院网络化控制系统重点实验室, 辽宁 沈阳 110016
3 中国科学院机器人与智能制造创新研究院, 辽宁 沈阳 110169
4 东北大学, 辽宁 沈阳 110006
5 中国科学院大学, 北京 100049
结合激光诱导击穿光谱(LIBS)技术,设计激光清洗在线监测系统以实时监测激光清洗的质量。实验所用的激光器为光纤激光器,其可以在多维空间中加工应用。首先确定激光清洗速度,并研究LIBS随激光单脉冲能量密度的变化规律,用来表征碳纤维复合材料清洗的效果。然后在数据分析的处理上,采用均值平滑去除背景的方法处理包络状的光谱连续背景;采用DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法实现光谱噪声和有效数据的分离;采用皮尔逊系数分析的方法确定激光清洗的最佳烧蚀次数,为激光清洗实现过程自动优化控制提供判定依据。最后采用扫描电子显微镜分析碳纤维表面形貌特征,证实LIBS技术在线监测激光清洗效果的有效性。
光谱学 激光诱导击穿光谱 碳纤维复合材料 激光清洗 实时监测 
中国激光
2020, 47(11): 1111003
吴嘉俊 1,2,*赵吉宾 1乔红超 1陆莹 1[ ... ]张旖诺 1,2
作者单位
摘要
1 中国科学院沈阳自动化研究所装备制造技术研究室,辽宁 沈阳 110016
2 中国科学院大学工程科学学院,北京100049
激光冲击强化是一种利用激光诱导等离子体冲击波来提高材料疲劳寿命的新型表面改性技术,具有强化效果显著、可控性强、适应性好等优点,对提高结构可靠性和部件疲劳强度、延长材料使用寿命具有重要作用。近年来,该技术受到了广泛重视,得到了快速发展。本文简要介绍了激光冲击强化技术的基本原理、特点与应用领域;总结了国内外激光冲击强化技术的发展状况与研究成果;并针对国内外激光冲击强化技术的现状,提出了一些现在需要解决的强化工艺问题;最后对激光冲击强化技术的应用前景进行了展望。
激光冲击强化 等离子体 冲击波 疲劳寿命 表面改性 laser shock processing plasma shock waves fatigue life surface strengthen 
光电工程
2018, 45(2): 170690
作者单位
摘要
1 中国科学院沈阳自动化研究所装备制造技术研究室, 辽宁 沈阳 110016
2 中国科学院大学, 北京 100049
采用数值模拟方法, 研究了激光冲击不同厚度钛合金零件时沿零件表面和深度方向的残余应力场分布规律, 并通过动态分析, 研究了冲击波在不同平面间的反射情况。结果表明, 当其他参数不变时, 试样的正面残余应力随厚度的增大而增大, 而反面残余应力随厚度的增大先增大后减小。当试样厚度为4 mm时, 正面显微硬度最大值为440.2 HV;当试样的厚度为2 mm时, 反面显微硬度最大值为416.1 HV。冲击波与声阻抗接触面作用产生的拉伸波与压缩波对残余应力场的分布有显著影响。
激光技术 激光冲击强化 薄壁件 钛合金 数值模拟 残余应力场 
中国激光
2018, 45(5): 0502005
作者单位
摘要
1 中国科学院金属研究所,沈阳 110016
2 中国科学技术大学材料科学与工程学院,沈阳 110016
3 中国科学院沈阳自动化研究所装备制造技术研究室,沈阳 110016
激光除锈技术是一种新型、绿色环保的除锈方法。对一些在极易生锈的工作环境中的低碳钢构件,采用激光除锈技术代替传统除锈方法,有广阔的发展前景。激光除锈技术主要利用辐射在锈蚀表面的激光能量高、脉冲短的特点,使锈蚀温度很快达到熔点以上。但在除锈的同时,会有部分激光透过锈蚀层直接与金属基底作用,以及辐射在锈蚀表面的激光也会通过热传导将部分能量传递到金属基底表面。本文采用实验分析手段,对金属基底表面的微观组织、力学性能、硬度等进行对比研究。结果表明,所采用的激光除锈工艺在获得良好的除锈效果情况下,对金属基底没有造成损伤,对金属基底表面性能没有产生显著影响.
激光清洗 除锈机理 低碳钢 表面性能 laser cleaning rust removal mechanism low carbon steel surface properties 
光电工程
2017, 44(12): 1210
作者单位
摘要
中国科学院沈阳自动化研究所,沈阳 110176
针对航空发动机整体叶盘,研发一种新型表面激光冲击强化的控制系统,该系统是一套全自动可控操作系统,通过工控机/PLC集成控制,实现自动化、数字化控制,并完成实时在线监控和信息交互反馈,属于开放式分布系统。该系统用于激光冲击强化核心设备(包括激光器、机器人、辅助控制、质量检测装置与辅助系统等),实现各环节的信息交互和系统的协同工作,通过实时监控系统,远程观察加工状态,有效避免重大事故的发生。同时,该控制系统添加激光冲击强化工艺试验数据记录功能,可根据实际需求调用后台工艺参数数据库,实现高效工艺参数优化。除此之外,该系统还能够实现激光冲击强化模型建立、加工过程有限元模拟、复杂曲面加工轨迹自动规划、加工策略制定等功能,从而实现航空发动机整体叶片激光冲击强化自动化生产,目前已经处于工程应用阶段。
激光冲击强化 自动化 模拟 轨迹规划 工艺参数 laser shock peening(LSP) automation simulation trajectory planning process parameters 
光电工程
2017, 44(8): 826
作者单位
摘要
1 中国科学院沈阳自动化研究所机器人国家重点实验室,沈阳 110016
2 中国科学院大学计算机与控制学院,北京 100049
针对目前国内激光冲击强化设备工业化程度不高的问题,采用固定光路系统结构形式和模块化设计方法,研制了一款激光冲击强化设备。分析了激光冲击强化设备的设计方案、激光光路布置特点以及系统控制方法,并对激光冲击强化设备技术指标进行了测试。保持室温在(22±2) ℃以内,设备开机20 min后,输出最大脉冲能量可达25 J,能量波动范围不超过3%,脉宽在16 ns~20 ns之间连续可调,波动范围在-1 ns~1 ns以内,光束的发散角小于2.5 mrad,光束指向波动小于50 μrad,重复频率0.5 Hz~5 Hz可调,光路系统的传输效率约为92%,约束层厚度均匀、且流量连续可控。测试结果表明,激光冲击强化设备的各项性能良好。
激光冲击强化设备 激光器 控制系统 光路系统 laser shock peening equipment laser control system optical system 
光电工程
2017, 44(7): 732
作者单位
摘要
1 东北大学机械工程与自动化学院,沈阳 110000
2 中国科学院沈阳自动化研究所装备制造技术研究室,沈阳 110016
激光冲击强化技术(LSP)是一种新型的激光应用表面处理技术。与传统表面改性技术相比,激光冲击强化技术能给材料带来更深的残余应力层,使材料表层晶粒细化甚至出现纳米晶,同时大幅提高材料的疲劳寿命。利用高能激光辐照约束层材料(黑漆、黑胶带或铝箔),约束层材料在瞬间熔融气化并产生高温高压的等离子体。等离子体冲击波是一种爆轰波,可以通过C-J模型计算冲击波的峰值压力。等离子体冲击波在约束层(水、光学玻璃)的约束下向材料内部传播,其压力远远超过了材料的弹性屈服极限,材料经历了弹性-塑性变形,最终材料表面形成稳定的残余应力场并发生微弱的塑性变形。本文介绍了激光冲击强化技术的研究发展历程,在此基础上对该技术发展方向进行了展望。
激光冲击强化 表面处理 残余应力层 纳米晶 等离子体冲击波 塑性变形 laser shock processing surface strengthening residual stress layer nanocrystalline plasma shock wave plastic deformation 
光电工程
2017, 44(6): 569
作者单位
摘要
中国科学院沈阳自动化研究所, 辽宁 沈阳 110176
研究了激光冲击强化对航空常用材料6082 铝合金的作用效果,考查了激光脉宽、单脉冲能量、冲击次数以及吸收层的厚度等工艺参数对该铝合金的显微硬度的影响,并对激光冲击强化工艺参数进行了正交试验设计。通过对正交试验进行分析,统计了不同因素最佳的冲击强化工艺,得出6028 铝合金最佳的工艺参数:16 ns 激光脉宽、6 J 单脉冲能量、一次冲击、0.2 mm 吸收层厚度。对正交试验结果进行了分析,得到结论:由于6082 铝合金的屈服强度较低,因此最高弹性应力也较低,强化效果最优的值较低,功率密度过大反而会影响激光冲击强化的效果,表面显微硬度也会随之降低。
激光冲击强化 铝合金 正交试验 显微硬度 
激光与光电子学进展
2015, 52(8): 081404
作者单位
摘要
1 中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
2 中国科学院大学, 北京 100049
利用激光冲击强化技术,对金属钨进行改性处理,研究了不同方法条件下,材料显微硬度的变化情况,得到了最佳的冲击参数。结果表明,激光冲击区域会发生晶粒的滑移,并产生高密度的位错,经过多次激光的反复冲击使材料内晶粒细化,并且产生新的晶界。当激光输出能量为7 J、脉宽为12 ns、冲击3次,显微硬度的提升相对显著,当冲击次数增加,显微硬度有进一步增加的趋势。在相同实验环境和条件下,当冲击4次时,试样达到最优的显微硬度,但是冲击达到6次时,可见明显裂纹。
激光技术 金属钨 激光冲击强化 显微硬度 能量 脉宽 
光学学报
2014, 34(s2): s214001
作者单位
摘要
1 中国科学院 沈阳自动化研究所, 辽宁 沈阳 110016
2 中国科学院 金属研究所, 辽宁 沈阳 110016
为研究激光冲击强化对TiAl合金组织和性能的影响, 利用波长为1 064 nm、脉宽为20 ns、单脉冲能量为0~22 J的Nd:YAG激光器对TiAl合金试件进行了实验研究。采用显微硬度计、表面粗糙度仪和扫描电镜分别测量了激光冲击强化前后的表面显微硬度、粗糙度和表面微观形貌, 利用X射线应力分析仪测量了激光冲击强化表面残余应力和晶面极性, 并分析了其高温稳定性。实验结果表明: 当单脉冲能量增加到9 J时, 表面显微硬度增加了33.4%, 粗糙度由0.042 μm增大到了0.285 μm, 表面残余压应力由20 MPa增加到了297 MPa, 表面微观形貌出现了凸凹不平, 局部纹理和层状微结构。将9 J激光冲击强化后的试件在650 ℃下保温4 h后, 残余压应力值从297 MPa降到230 MPa, 显微硬度值从377 HV0.2降到345 HV0.2, (002)晶面取向有向中心移回的趋势。得到的数据显示, 激光冲击强化能够极大地改善TiAl合金的组织和性能, 且具有一定的高温稳定性。
激光冲击强化 钛铝合金 高温稳定性 组织性能 laser peening TiAl alloy high temperature stability microstructure property 
光学 精密工程
2014, 22(7): 1766

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!