作者单位
摘要
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110000, China
2 Equipment Manufacturing Technology Department, Shenyang Institute of Automation,Chinese Academy of Sciences, Shenyang 110016, China
laser shock processing surface strengthening residual stress layer nanocrystalline plasma shock-wave plastic deformation 
光电工程
2017, 44(6): 658
作者单位
摘要
1 School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110000, China
2 Equipment Manufacturing Technology Department, Shenyang Institute of Automation,Chinese Academy of Sciences, Shenyang 110016, China
laser shock processing surface strengthening residual stress layer nanocrystalline plasma shock-wave plastic deformation 
光电工程
2017, 44(6): 658
作者单位
摘要
1 东北大学机械工程与自动化学院,沈阳 110000
2 中国科学院沈阳自动化研究所装备制造技术研究室,沈阳 110016
激光冲击强化技术(LSP)是一种新型的激光应用表面处理技术。与传统表面改性技术相比,激光冲击强化技术能给材料带来更深的残余应力层,使材料表层晶粒细化甚至出现纳米晶,同时大幅提高材料的疲劳寿命。利用高能激光辐照约束层材料(黑漆、黑胶带或铝箔),约束层材料在瞬间熔融气化并产生高温高压的等离子体。等离子体冲击波是一种爆轰波,可以通过C-J模型计算冲击波的峰值压力。等离子体冲击波在约束层(水、光学玻璃)的约束下向材料内部传播,其压力远远超过了材料的弹性屈服极限,材料经历了弹性-塑性变形,最终材料表面形成稳定的残余应力场并发生微弱的塑性变形。本文介绍了激光冲击强化技术的研究发展历程,在此基础上对该技术发展方向进行了展望。
激光冲击强化 表面处理 残余应力层 纳米晶 等离子体冲击波 塑性变形 laser shock processing surface strengthening residual stress layer nanocrystalline plasma shock wave plastic deformation 
光电工程
2017, 44(6): 569

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!