激光与光电子学进展, 2015, 52 (8): 081404, 网络出版: 2015-07-23  

6082铝合金激光冲击强化显微硬度正交试验 下载: 543次

Orthogonal Test of Laser Shocked 6082 Aluminum Alloy
作者单位
中国科学院沈阳自动化研究所, 辽宁 沈阳 110176
摘要
研究了激光冲击强化对航空常用材料6082 铝合金的作用效果,考查了激光脉宽、单脉冲能量、冲击次数以及吸收层的厚度等工艺参数对该铝合金的显微硬度的影响,并对激光冲击强化工艺参数进行了正交试验设计。通过对正交试验进行分析,统计了不同因素最佳的冲击强化工艺,得出6028 铝合金最佳的工艺参数:16 ns 激光脉宽、6 J 单脉冲能量、一次冲击、0.2 mm 吸收层厚度。对正交试验结果进行了分析,得到结论:由于6082 铝合金的屈服强度较低,因此最高弹性应力也较低,强化效果最优的值较低,功率密度过大反而会影响激光冲击强化的效果,表面显微硬度也会随之降低。
Abstract
We studied a kind of common aerial aluminum alloy material, 6082 aluminum alloy, by laser shock processing (LSP) in this paper. This research forced on the effect of technology parameters on the micro-hardness peened by laser, including laser pulse width, signal pulse energy, the number of laser shocks, and the thickness of ablative layer. We designed an orthogonal experiment of process parameters of LSP, and the best technological parameters are obtained. On this basis, the best performance of the SLP of 6082 aluminum alloy is analyzed: Laser pulse width is 16 ns, and energy is 6 J when 6082 aluminum alloy is peened only once with the 0.2-mm thickness of absorption layer. According to the test results, we conclude that due to the low yield strength of 6082 aluminium alloy, the highest elastic level is also lower, thus the optimal value of the strengthen effect is low. When the power density is too large, it will influence the effect of LSP. The surface microhardness will also decrease.
参考文献

[1] 朱伟, 周建忠, 黄舒, 等. 微尺度激光喷丸纯铜数值模拟和统计优化分析[J]. 中国激光, 2011, 38(s1): s103005.

    Zhu Wei, Zhou Jianzhong, Huang Shu, et al.. Study on the numerical simulation and statistical optimization of microscale laser shock peening[J]. Chinese J Lasers, 2011, 38(s1): s103005.

[2] 聂祥樊, 何卫锋, 李启鹏, 等. 激光喷丸改善TC6 钛合金组织和力学性能[J]. 强激光与粒子束, 2013, 25(5): 1115-1119.

    Nie Xiangfan, He Weifeng, Li Qipeng, et al.. Improvement of structure and mechanical properties of TC6 titanium alloy with laser shock peening[J]. High Power laser and Particle Beams, 2013, 25(5): 1115-1119.

[3] 李伟, 李应红, 何伟峰, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 13-19.

    Li Wei, Li Yinghong, He Weifeng, et al.. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 13-19.

[4] Lin D, Zhang M Y, Ye C, et al.. Larger scale, highly dense nanoholes on surfaces by underwater laser assisted hydrogen etching etchnear nanocrystalline boundary[J]. Applied Surface Science, 2012, 258(10): 4254-4259.

[5] 乔红超, 赵亦翔, 赵吉宾, 等. 激光冲击强化对TiAl 合金组织和性能的影响[J]. 光学 精密工程, 2014, 22(7): 1766-1773.

    Qiao Hongchao, Zhao Yixiang, Zhao Jibin, et al.. Effect of laser peening on microstructures and properties of TiAlalloy [J]. Optics and Precision Engineering, 2014, 22(7): 1766-1773.

[6] 陆莹, 赵吉宾, 乔红超. TiAl 合金激光冲击强化工艺探索及强化机制研究[J]. 中国激光, 2014, 41(10): 1003013.

    Lu Ying, Zhao Jibin, Qiao Hongchao. Investigation of technical and strengthening mechanism research of TiAlalloy by laser shock peening[J]. Chinese J Lasers, 2014, 41(10): 1003013.

[7] Amar H, Vignal V, Krawiec H, et al.. Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy[J]. Corrosion Science, 2011, 53(2): 3215-3221.

[8] 乔红超, 赵吉宾, 陆莹. 纳秒脉宽Nd∶YAG 激光冲击强化激光器的研制及分析[J]. 中国激光, 2013, 40(8): 0802001.

    Qiao Hongchao, Zhao Jibin, Lu Ying. Develop and analysis of nanosecond pulse width Nd∶YAG laser for laser peening[J]. Chinese J Lasers, 2013, 40(8): 0802001.

[9] Luo K Y, Lu J Z, Zhang L F, et al.. The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J]. Materials and Design, 2010, 31(5): 2599-2603.

[10] Couturier S, De R M, Hallouin M, et al.. Shock profile induced by short laser pulses[J]. Journal of Applied Physics, 1996, 79(12): 554-565.

[11] Chu J P, Rigsbee J M, Banas G, et al.. Laser- shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Materials Science and Engineering, 1999, 260(1): 260-268.

[12] Zhang Y K, Lu J Z, Ren X D, et al.. The effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5): 1697-1703.

[13] 罗新民, 苑春智, 张静文, 等. 激光冲击及其对金属材料组织和性能的影响[J]. 热处理, 2012, 27(1): 7-23.

    Luo Xinmin, Yuan Chunzhi, Zhang Jingwen, et al.. Laser shocking and its effects on microstructure and properties of metallic materials[J]. Heat Treatment, 2012, 27(1): 7-23.

[14] 倪敏雄, 周建忠, 杨超君, 等. 激光冲击处理的残余应力场形成机理及影响因素分析[J]. 应用激光, 2006, 26(2): 73-77.

    Ni Minxiong, Zhou Jianzhong, Yang Chaojun, et al.. Investigation of generation mechanism and influencing factors on residual stress fields by laser shock processing[J]. Applied Laser, 2006, 26(2): 73-77.

陆莹, 赵吉宾, 乔红超. 6082铝合金激光冲击强化显微硬度正交试验[J]. 激光与光电子学进展, 2015, 52(8): 081404. Lu Ying, Zhao Jibin, Qiao Hongchao. Orthogonal Test of Laser Shocked 6082 Aluminum Alloy[J]. Laser & Optoelectronics Progress, 2015, 52(8): 081404.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!