大气与环境光学学报, 2019, 14 (4): 279, 网络出版: 2019-08-13  

国产傅立叶变换红外光谱温室气体在线监测仪及其 在大气本底监测中的初步应用

Domesticin-situ Analyzer of Greenhouse Gases with Fourier Transform Infrared Spectroscopy and its Primary Application in Atmospheric Background Observation
作者单位
1 中国气象局气象探测中心,北京 100081
2 黑龙江龙凤山大气本底站,黑龙江 五常 150200
3 安徽蓝盾光电子股份有限公司,安徽 铜陵 244000
摘要
傅立叶变换红外光谱(Fourier transform infrared spectroscopy, FTIR)技术在大气环境在线监测 领域有着广泛的应用,利用项目研制的基于傅立叶红外技术与White型多次反射池技术的国产FTIR系统, 在龙凤山本底站进行了实际大气CH4、CO、CO2和N2O的多组分在线测量,并与本底站多年业务运行 的CRDS和GC系统的观测结果进行了同步对比分析。结果表明,(1)当前研制的FTIR原理样机的检出限 较高,可满足高浓度温室气体排放的在线监测要求。但在大气本底监测方面,其与WMO-GAW的要求尚有一 定差距,在检测能力(光能衰减、有效光程、波长校准、测量腔室等)、分析精度、不确定度以及 系统稳定性等方面仍有较大的提升空间。(2)FTIR系统与CRDS和GC系统对大气CH4、CO观测的 一致性变化趋势和相关性较好, CO2和N2O的一致性趋势不很理想,这与观测系统的原理、 分析技术、样品处理以及数据处理方法等有关。
Abstract
Fourier transform infrared spectroscopy (FTIR) technique is widely used in the field of atmospheric environment observation. A in-situ FTIR analyzer system based on the combination of the technology of Fourier infrared spectrum and White type multiple reflection cell was used to measure the multi-species of CH4, CO, CO2 and N2O in the field of Longfengshan background GAW station, Heilongjiang, China, and its comparation with the CRDS and GC system was also carried out concurrently. The results show that, (1) the detection limit of FTIR principle prototype is a higher than that of design, which can satisfy the in-situ observation of high concentration of greenhouse gas emissions. However, there was still a certain gap between the syetem and the requirement of the WMO-GAW atmospheric background observation, which means that the domestic FTIR principle prototype has room for improvement in the detection ability (such as light energy attenuation, efficient optical path, the wavelength calibration and measurement chamber, etc.), the analysis precision, uncertainty, and the system stability, etc. (2) By comparison with CRDS and GC system, it was shown that there were a higher agreement on the trend consistency and correlation of CH4 and CO, although the trend consistency of CO2 and N2O was not very ideal, which indicates that the performance of the analyzer system might be relative to the observation system, such as original principle, analysis and detect technology, ambient sample processing, data processing and so on.
参考文献

[1] Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics: from Air Pollution to Climate Change [M]. 2nd ed. USA: John Wiley & Sons Inc, 2006: 1026-1053.

[2] 唐孝炎, 张远航, 邵 敏. 大气环境化学 [M]. 第二版. 北京: 高等教育出版社, 2006: 528-532.

    Tang Xiaoyan, Zhang Yuanhang, Shao Min.Atmospheric Environmental Chemistry [M]. 2nd ed. Beijing: Higher Education Press, 2006: 528-532(in Chinese).

[3] 丁一汇. 气候变化 [M]. 北京: 气象出版社, 2010: 2-7.

    Ding Yihui.Climate Change [M]. Beijing: China Meteorological Press, 2010: 2-7(in Chinese).

[4] Wigley T M L. The Climate Change Commitment [J].Science, 2005, 307(5716): 1766-1769.

[5] Keeling C D, Whorf T P, Wahlen M,et al. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 [J]. Nature, 1995, 375(6533): 666-670.

[6] Barnola J M, Raynaud D, Korotkevich Y S,et al. Vostok ice core provides 160,000-year record of atmospheric CO2 [J]. Nature, 1987, 329: 408-414.

[7] 王明星, 曾庆存. 大气中的二氧化碳含量 [J]. 大气科学, 1986, 10(2): 212-219.

    Wang Mingxing, Zeng Qingcun. Carbon dioxide in the atmosphere―a review [J].Chinese Journal of Atmospheric Sciences, 1986, 10(2): 212-219(in Chinese).

[8] Ramanathan V, Cicerone R J, Kiehl J T,et al. Trace gas trends and their potential role in climate change [J]. Journal of Geophysical Research, 1985, 90: 5547-5566.

[9] 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点 [J]. 冰川冻土, 2013, 35(5): 1068-1076.

    Shen Yongping, Wang Guoya. Key findings and assessment results of IPCC WGI fifth assessment report [J].Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076(in Chinese).

[10] Stocker T F, Qin D,et al. IPCC, 2103: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. 2013: 11-14.

[11] 秦天宝. 论《巴黎协定》中“自下而上”机制及启示 [J]. 国际法研究, 2016(3): 64-76.

    Qin Tianbao. The “Bottom-up” approach in the Paris Agreement and its enlightenment [J].Chinese Review of International Law, 2016(3): 64-76(in Chinese).

[12] 王绍武, 罗 勇, 赵宗慈, 等. 为减缓全球变暖而奋斗 [J]. 气候变化研究进展, 2013, 9(1): 61-66.

    Wang Shaowu, Luo Yong, Zhao Zongci,et al. Struggle for amelioration of global warming [J]. Progressus Inquisitiones De Mutatione Climatis, 2013, 9(1): 61-66(in Chinese).

[13] 魏一鸣, 范 英, 王 毅, 等. 关于我国碳排放问题的若干对策与建议 [J]. 气候变化研究进展, 2006, 2(1): 15-20.

    Wei Yiming, Fan Ying, Wang Yi,et al. Suggestions and solutions to carbon emissions in China [J]. Advances in Climate Change Research, 2006, 2(1): 15-20(in Chinese).

[14] 温玉璞, 邵志清, 徐晓斌, 等. 青海瓦里关大气二氧化碳本底浓度变化规律的观测研究 [J]. 中国环境科学, 1993, 13(6): 420-424.

    Wen Yupu, Shao Zhiqing, Xu XiaoBin,et al. Preliminary study of atmospheric CO2 variations at Mt. Waliguan [J]. China Environmental Science, 1993, 13(6): 420-424(in Chinese).

[15] 周凌晞 ,张晓春, 郝庆菊, 等. 温室气体本底观测研究 [J]. 气候变化研究进展, 2006, 2(2): 63-67.

    Zhou lingxi, Zhang Xiaochun, Hao Qingju,et al. Study of the background greenhouse gas observation [J]. Advances in Climate Change Research, 2006, 2(2): 63-67(in Chinese).

[16] 刘立新,5cm0.6cm-0.4cm , 张晓春, 等. 我国4个国家级本底站大气CO2浓度变化特征 [J]. 中国科学D辑: 地球科学, 2009, 39(2): 222-228.

    Liu Lixin, Zhou Lingxi, Zhang Xiaochun,et al. The characteristics of atmospheric CO2 concentration variation of four national background stations in China [J]. Science in China: Series D Earth Sciences, 2009, 39(2): 222-228(in Chinese).

[17] 贾小芳, 张晓春, 赵亚南, 等. 我国与周边国家和地区的CO2本底浓度对比分析 [J]. 大气与环境光学学报, 2017, 12(2): 120-127.

    Jia Xiaofang, Zhang Xiaochun, Zhao Yanan,et al. Comparative analysis of CO2 background concentration between China mainland and neighboring countries and regions [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(2): 120-127(in Chinese).

[18] World Meteorological Organization/Global Atmosphere Watch. Global Atmosphere Watch Guide [R]. GAW Report No. 86 (WMO/ TD No.553). Geneva. 1993.

[19] Komhyr W D, Waterman L S, Taylor W R. Semiautomatic non-dispersive infrared analyzer apparatus for CO2 air sample analysis [J]. Journal of Geophysical Research: Oceans, 1983, 88(C2): 1315-1322.

[20] 张晓春. 大气二氧化碳和甲烷本底浓度的气相色谱监测 [J]. 青海气象, 1995(1): 13-19.

    Zhang Xiaochun. The gas-chromatograph observation of atmosphere CO2 and CH4 background concentration [J]. Qinghai Meteorology, 1995(1): 13-19(in Chinese).

[21] 张晓春, 赵玉成, 乜 虹, 等. 新型大气二氧化碳本底浓度红外监测系统及其测量结果的分析 [J]. 青海环境, 1998, 8(4): 149-152.

    Zhang Xiaochun, Zhao Yucheng, Nie Hong,et al. New NDIR observation system of atmosphere CO2 background concentration and analysis of measurement [J]. Qinghai Environmental, 1998, 8(4): 149-152(in Chinese).

[22] 方双喜,5cm0.6cm-0.4cm , 张 芳, 等. 双通道气相色谱法观测本底大气中的CH4、CO、N2O、SF6 [J]. 环境科学学报, 2010, 30(1): 52-59.

    Fang Shuangxi, Zhou Lingxi, Zhang Fang,et al. Dual channel GC system for measuring background atmospheric CH4, CO, N2O and SF6 [J]. Acta Scientiae Circum Stantiae, 2010, 30(1): 52-59(in Chinese).

[23] 方双喜,5cm0.6cm-0.4cm , 臧昆鹏, 等. 光腔衰荡光谱(CRDS)法观测我国4 个本底站大气CO2 [J] . 环境科学学报, 2011, 31(3): 624-629.

    Fang Shuangxi, Zhou Lingxi, Zang Kunpeng,et al. Measurement of atmospheric CO2 mixing ratio by cavity ring-down spectroscopy (CRDS) at the 4 background stations in China [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 624-629(in Chinese).

[24] 刘英明, 王 健, 俞大海, 等. 积分腔输出光谱技术及其应用综述 [J].光学仪器, 2009, 31(5): 87-91.

    Liu Yingming, Wang Jian, Yu Dahai,et al. Review of integrated cavity output spectroscopy technology and its application [J]. Optical Instruments, 2009, 31(5): 87-91(in Chinese).

[25] 夏玲君, 刘立新,5cm0.6cm-0.4cm , 等. 改进的大气CO2、CH4、N2O、CO在 线观测FTIR系统 [J]. 环境科学, 2013, 34(11): 4159-4164.

    Xia Lingjun, Liu Lixin, Zhou Lingxi,et al. Study on the in-situ measurement of greenhouse gas by an improved FTIR [J]. Environmental Sicence, 2013, 34(11): 4159-4164(in Chinese).

[26] 徐 亮, 刘建国, 高闽光, 等. FTIR监测北京地区CO2和CH4及其变化分析 [J]. 光谱学与光谱分析, 2007, 27(5): 889-891.

    Xu Liang, Liu Jianguo, Gao Minguang,et al. Monitoring and analysis of CO2 and CH4 using long path FTIR spectroscopy over Beijing [J]. Spectroscopy and Spectral Analysis, 2007, 27(5): 889-891(in Chinese).

[27] 韩香玉, 卢照方. 温室效应和温室气体监测 [J]. 分析仪器, 2011(6): 72-74.

    Han Xiangyu, Lu Zhaofang. Greenhouse effect and greenhouse gases monitoring [J].Analytical Instrumentation, 2011(6): 72-74(in Chinese).

[28] 汪 巍, 刘 冰, 李健军,等. 大气温室气体浓度在线监测方法研究进展 [J]. 环境工程, 2015(6): 125-128.

    Wang Wei, Liu Bing, Li Jianjun,et al. Progress on in-situ monitoring methods of atmospheric greenhouse gases [J]. Environmental Engineering, 2015(6): 125-128(in Chinese).

[29] W.H. Steel. Interferometers without Collimation for Fourier spectroscopy [J].Journal of The Optical Society of America, 1964, 54(2):151-156

[30] 王明智. 傅立叶红外光谱仪(FTIR)的基本原理及其应用 [J]. 科技风, 2014(6): 112-113.

    Wang Mingzhi. The basic principle and its application of FTIR [J].Technology Wind, 2014(6): 112-113(in Chinese).

[31] 朱 军, 刘文清, 刘建国, 等. 傅里叶变换红外光谱学方法用于气体定量分析 [J]. 仪器仪表学报, 2007, 28(1): 80-84.

    Zhu Jun, Liu Wenqing, Liu Jianguo,et al. Quantitative gas analysis using Fourier transform infrared spectroscopy method [J]. Chinese Journal of Scientific Instrument, 2007, 28(1): 80-84(in Chinese).

[32] 徐 亮, 刘建国, 高闽光, 等. 开放式长光程傅里叶变换红外光谱系统在环境气体分析中的应用 [J]. 光谱学与光谱分析, 2007, 27(3): 448-451.

    Xu Liang, Liu Jianguo, Gao Minguang,et al. Application of long open path FTIR system in ambient air monitoring [J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 448-451(in Chinese).

[33] 周凌晞 ,夏玲君,藏昆鹏,等. 大气二氧化碳(CO2)光腔衰荡光谱观测系统: GB/T 34415-2017[S]. 北京: 中国质量标准出版传媒有限公司(中国标准出版社),2017.

    Zhou Lingxi, Xia Lingjun, Zang Kunpen,et al. Cavity ring-down spectroscopy system for measurement of atmospheric carbon dioxide : GB/T 34415-2017 [S].Beijing. China Quality and Standards Publishing & Media Co. Ltd. 2017.

[34] 吴艳玲, 宁尚军, 于大江, 等. 龙凤山区域大气本底站大气二氧化碳(CO2)浓度变化特征 [J]. 环境化学, 2015, 34(9): 1627-1632.

    Wu Yanling, Ning Shangjun, Yu Dajiang,et al. Characteristics of CO2 concentrations and its variations at Longfengshan regional atmospheric background station in Northeast China [J]. Environmental Chemistry, 2015, 34(9): 1627-1632(in Chinese).

[35] World Meteorological Organization/Global Atmosphere Watch. 15th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (Jena, Germany, 7-10 September 2009) [R]. GAW Report No. 194(WMO/TD No. 1553). Geneva. 2011.

[36] Griffith D W T, Deutscher N M, Krummel,et al. The UOW FTIR trace gas analyser: comparison with loflo, agage and tank measurements at Cape Grim and Gaslab [R]. Baseline Atmospheric Program, Australia, 2010.

[37] Griffith D W T, Deutscher N M, Caldow C G R,et al. A Fourier transform infrared trace gas analyser for atmospheric applications [J]. Atmospheric Measurement Techniques Discussions, 2012, 5(3): 3717-3769.

[38] Esler M B, Griffith D W T, Wilson S R,et al. Precision trace gas analysis by FT-IR spectroscopy 1. simultaneous analysis of CO2, CH4, N2O and CO in air [J]. Analytical Chemistry, 2000, 72(1): 206-215.

[39] Hammer S, Griffith D W T, Konard G,et al. Assessment of multi-species in-situ FTIR for precise atmospheric greenhouse gas observation [J]. Atmospheirc Measurement Techniques Discussions, 2012, 5(3): 3645-3692.

张晓春, 宋庆利, 曹永, 王鹏, 于大江, 王缅, 温民. 国产傅立叶变换红外光谱温室气体在线监测仪及其 在大气本底监测中的初步应用[J]. 大气与环境光学学报, 2019, 14(4): 279. ZHANG Xiaochun, SONG Qingli, CAO Yong, WANG Peng, YU Dajiang, WAMG Mian, WEN Min. Domesticin-situ Analyzer of Greenhouse Gases with Fourier Transform Infrared Spectroscopy and its Primary Application in Atmospheric Background Observation[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(4): 279.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!