光学 精密工程, 2014, 22 (10): 2683, 网络出版: 2014-11-06   

四面体磁梯度张量系统的误差补偿

Error compensation of tetrahedron magnetic gradiometer
作者单位
1 海军潜艇学院 航海观通系,山东 青岛 266001
2 海军航空工程学院 控制工程系,山东 烟台 264001
3 海军91049部队,山东 青岛 266102
4 海军92474部队,海南 三亚 572018
摘要
针对搭载于水下无人航行器(UUV)的磁梯度张量系统的系统误差,提出了一种系统误差补偿方法。该方法利用四面体磁梯度张量系统的差分测量算法,融合系统中单个矢量磁力仪的系统误差和磁力仪之间的安装中心错位误差,建立了四面体磁梯度张量系统误差数学模型;基于此数学模型提出了系统误差补偿算法,并根据磁梯度张量9分量之间的数学关系提出了补偿参数辨识方法;最后,通过仿真实验对该方法进行了验证。实验结果表明:该方法可以有效补偿磁梯度张量系统的系统误差,补偿量达96.2%,且补偿效果优于参考文献提出的系统误差补偿方法。该方法利用补偿参数对磁梯度张量系统的输出值直接进行系统误差补偿,从理论上解决了磁梯度张量系统整体误差的统一补偿问题。
Abstract
A compensation method was proposed for systematic errors of the tetrahedron magnetic gradiometer on an Unmanned Underwater Vehicle (UUV). With the difference algorithm based on tetrahedron magnetic gradient tensor, the method fused the error of each vector magnetometer and the installation error between the magnetometers to establish the mathematic model of the magnetic gradiometer errors. Based on this error model, the error compensation algorithm was proposed and the compensation coefficient recognition method was presented by mathematic relations of 9 components of the magnetic gradient tensor. The method was verified by simulation experiments. The simulation results show that the proposed method compensates 96.2% systematic errors of the magnetic gradiometer efficiently, and the compensation effect is better than that of the existing method in references. As the method compensates systematic errors of the magnetic gradiometer output directly by the compensation coefficients, it realizes the holistic systematic error compensation of the magnetic gradiometer theoretically.
参考文献

[1] W. M. WYNN. Magnetic dipole localization with a tensor gradiometer: a rigorous analysis including relative motion [C]. Proceedings of the 2d International Conference on Marine Electromagnetics (MRELEC 99), Brest France, 1999: 295-303.

[2] 张昌达. 航空磁力梯度张量测量-航空磁测技术的最新进展[J]. 工程地球物理学报, 2006, 3(5):354-361.

    ZHANG CH D. Airborne tensor magnetic gradiometry-the latest progress of airborne magnetometric technology[J]. Chinese Journal of Engineering Geophysics, 2006,3(5):354-361. (in Chinese)

[3] 龙亮, 钟少龙, 徐静, 等. 微型光纤磁传感器的设计与制作[J]. 光学精密工程, 2013, 21(9):2294-2302.

    LONG L, ZHONG SH L, XU J, et al.. Design and fabrication of micro fiber-optic magnetic sensor[J]. Opt. Precision Eng., 2013,21(9):2294-2302.

[4] KEENE M N, HUMPHREY K P, HORTON T J. Actively shielded, adaptively balanced squid gradiometer system for operation aboard moving platforms [J]. IEEE Transactions on applied superconductivity, 2005,15(2):761-764.

[5] ALLEN G I, SULZBERGER G, BONO J T, et al.. Initial evaluation of the new real-time tracking gradiometer designed for small unmanned underwater vehicles[C]. MTS/IEEE Oceans 2005, Washington DC, 2005: 1956-1962.

[6] ALLEN G, WYNN M, MATTHEWS R. Mitigation of platform generated magnetic noise impressed on a magnetic sensor mounted in an autonomous underwater vehicle[C]. MTS/IEEE Oceans 2001, Honolulu, 2001:64-71.

[7] BONO J T, OVERWAY D J, WYNN W M. Magnetic sensor operation onboard a UUV: magnetic noise investigation using a total-field gradiometer[C]. MTS/IEEE Oceans 2003, San Diego, 2003: 2018-2022.

[8] PEI Y H, YEO H G. UXO Survey using vector magnetic gradiometer on autonomous underwater vehicle[C]. MTS/IEEE Oceans 2009, Biloxi, 2009:1-8.

[9] PEI Y H, YEO H G. Magnetic gradiometer inversion for underwater magnetic object parameters [C]. MTS/IEEE Oceans 2006, Singapore, 2006:1-6.

[10] 陈棣湘, 潘孟春, 罗飞路. 三维磁敏传感器的设计及误差分析[J]. 传感技术学报, 2006,19(3):642-644.

    CHEN D X, PAN M CH, LUO F L. Design and error analyses of 3D magnetic sensor[J]. Chinese Journal of Sensors and Actuators, 2006,19(3):642-644. (in Chinese)

[11] 黄学功, 王炅. 地磁信号检测系统误差分析与补偿方法研究[J]. 兵工学报, 2011, 32(1): 33-36.

    HUANG X G, WANG J. Error analysis and compensation methods for geomagnetic signal detection system[J]. Acta Armamentarii, 2011, 32(1): 33-36.

[12] FITZGIBBON A W, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.

[13] 杨新勇, 黄圣国. 磁航向测量系统误差修正方法研究[J]. 仪器仪表学报, 2004, 25(4): 466-469.

    YANG X Y, HUANG SH G. Study of error compensation method for magnetic heading measurement system[J]. Chinese Journal of Scientific Instrument, 2004, 25(4): 466-469. (in Chinese)

[14] KHURANA K K, KEPKO E L, KIVELSON M G, et al.. Accurate calculation of magnetic field gradients from four point vector measurements-Part 11: Use of natural constraints on vector data obtained from four spinning spacecraft[J]. IEEE Transactions on magnetics, 1996, 32(5): 5193-5205.

于振涛, 吕俊伟, 郭宁, 周静. 四面体磁梯度张量系统的误差补偿[J]. 光学 精密工程, 2014, 22(10): 2683. YU Zhen-tao, Lv Jun-wei, GUO Ning, ZHOU Jing. Error compensation of tetrahedron magnetic gradiometer[J]. Optics and Precision Engineering, 2014, 22(10): 2683.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!