人工晶体学报, 2020, 49 (5): 908, 网络出版: 2020-08-06  

铵浸钢渣熔融还原提铁制备微晶玻璃研究

Study on Glass-ceramics Preparation through Melting Reduction of Steel Slag Leached by Ammonium Chloride
作者单位
1 长江师范学院,超常配位键工程与新材料技术实验室,重庆 408000
2 中南大学冶金与环境学院, 长沙 410012
摘要
利用氯化铵浸出钢渣,可有效浸取Ca元素并就地固定CO2制备碳酸钙,浸出后的铵浸渣由于CaO含量的降低,无需加入大量的改质剂就能还原提铁并制备微晶玻璃。基于此,引入热力学计算,对铵浸钢渣提铁并制备微晶玻璃的可行性进行探究,初步结果表明铵浸钢渣与40wt%的SiO2混合后进行提铁,铁的还原率高达98.47%,且还原渣物相主要为透辉石; 由还原渣制备得到的基础玻璃在800 ℃下核化1 h,960 ℃下晶化1 h,得到微晶玻璃,其主晶相为透辉石,并夹杂部分钙长石; 基础玻璃析晶活化能为597.4 kJ/mol,晶体生长指数均小于3,为表面析晶。
Abstract
Calcium element can effectively be leached out and carbon dioxide can be sequestered on the spot to prepare commercial calcium carbonate through leaching of steel slag by ammonium chloride. Due to the decrease of CaO content in steel slag leached by ammonium, there is no need to use a lot of modification agent to reduce and extract iron and prepare glass-ceramics. Therefore, thermodynamic calculation was introduced to explore the feasibility of extracting iron from ammonium leaching steel slag and preparing glass-ceramics. The preliminary results shows that for the mixture of steel slag leached by ammonium chloride and 40wt% SiO2, the reduction rate of iron is as high as 98.47%, and the main phases of reducing residues is diopside; the main crystal phase of glass ceramics is diopside mixed up with some calcium feldspar by nucleation for 1 h at 800 ℃ and crystallization for 1 h at 960 ℃; and the crystallization activation energy of base glass is 597.4 kJ/mol, and the crystal growth indexes are all less than three, indicating surface crystallization.
参考文献

[1] World steel association. Total production of crude steel-World tota[2020-03-11]. https: //www.worldsteel.org/internet-2017/ steel- by-topic/statistics/steel-data-viewer/P1_crude_steel_total/CHN/IND.

[2] 郭文波,苍大强,杨志杰,等.钢渣熔态提铁后的二次渣制备微晶玻璃的实验研究[J].硅酸盐通报,2011,30(5): 1189-1192.

[3] 段欣然,王 玮,张 阳.利用冶金工业废渣制备建材玻璃的研究[J].建材与装饰,2019(5): 41-42.

[4] 王 晟,岳昌盛,陈 瑶,等.钢渣碳酸化用于CO2减排的研究进展与展望[J].材料导报,2016,30(1): 111-114+121.

[5] 陈 菁,燕春培,郁青春.氧化锌对熔渣微晶玻璃析晶及理化性能的影响[J].中国陶瓷,2019,55(2): 50-55.

[6] 杨 峰,方久华,左明扬,等.利用工业废渣制作β-CaCO3/Cr2O3双相微晶玻璃[J].四川水泥,2019(7): 6+32.

[7] Francis A A. Conversion of blast furnace slag into new glass-ceramic material[J].Journal of the European Ceramic Society,2004,24(9): 2819-2824.

[8] Guo X Z, Cai X B, Song J, et al. Crystallization and microstructure of CaO-MgO-Al2O3-SiO2 glass-ceramics containing complex nucleation agents[J].Journal of Non-Crystalline Solids,2014,405: 63-67.

[9] He D F, Gao C, Pan J T, et al. Preparation of glass-ceramics with diopside as the main crystalline phase from low and medium titanium-bearing blast furnace slag[J].Ceramics International,2018,44(2): 1384-1393.

[10] Mandal S, Chakrabarti S, Ghatak S, et al. Ultra low and negative expansion glass-ceramic materials produced from pyrophyllite and blast furnace slag[J].Bulletin of Materials Science,2005,28(5): 437-443.

[11] Ponsot I, Bernardo E. Self glazed glass ceramic foams from metallurgical slag and recycled glass[J].Journal of Cleaner Production,2013,59: 245-250.

[12] 潘文平,康 浩.CaO-Al2O3-SiO2系微晶玻璃的制备及性能研究[J].陶瓷,2018(10): 45-53.

[13] 石福志,肖永力,李永谦,等.Cr2O3、Fe2O3、TiO2复合晶核剂系高炉渣微晶玻璃的制备及表征[J].宝钢技术,2015(5): 13-17.

[14] 吴春丽,张深根,杨 健,等.CaO/SiO2质量比对不锈钢渣微晶玻璃析晶及性能的影响[J].材料导报,2015,29(18): 84-88.

[15] 赵贵州,李 宇,代文彬,等.钢渣基高碱度微晶玻璃的一步法制备及工艺参数研究[J].工程科学学报,2016,38(2): 207-212.

[16] 熊辉辉,郭文波,张庆晓,等.Al2O3对钢渣提铁后二次渣制取的微晶玻璃性能的影响[J].硅酸盐通报,2013,32(4): 758-762+771.

[17] 谢春帅,贵永亮,胡宾生,等.TiO2对熔融态高炉渣微晶玻璃析晶及性能的影响[J].中国陶瓷,2016,52(6): 25-29.

[18] Tong Z B, Ma G J, Zhou D, et al. The indirect mineral carbonation of electric arc furnace slag under microwave irradiation[J].Sci Rep.2019,9: 7.

[19] 冯晋阳,龙 民,陶海征,等.透辉石微晶玻璃的低温烧结制备及性能表征[J].人工晶体学报,2019,48(5): 968-973.

孙靖婷, 谭昭君, 王江, 韩笋, 郭学益, 童志博. 铵浸钢渣熔融还原提铁制备微晶玻璃研究[J]. 人工晶体学报, 2020, 49(5): 908. SUN Jingting, TAN Zhaojun, WANG Jiang, HAN Sun, GUO Xueyi, TONG Zhibo. Study on Glass-ceramics Preparation through Melting Reduction of Steel Slag Leached by Ammonium Chloride[J]. Journal of Synthetic Crystals, 2020, 49(5): 908.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!