中国激光, 2017, 44 (12): 1206005, 网络出版: 2017-12-11   

光纤法布里-珀罗传感器偏振互相关解调系统的复消色差光路设计

Design of Apochromatic Optical Path in Polarization Cross-Correlation Demodulation System Based on Fiber Fabry-Perot Sensor
作者单位
北京航空航天大学仪器科学与光电工程学院, 北京 100191
摘要
光纤法布里-珀罗(F-P)传感器被广泛应用于航空发动机的检测中。偏振互相关解调法是最常用的F-P腔长解调方法。在偏振互相关解调系统中, 光学系统的轴向色差会引起零级干涉条纹的偏移和光强的减小, 从而降低解调精度并减小信号幅值, 因此分析了光学系统的轴向色差对解调的影响。为了减小光学系统的轴向色差对解调的影响, 设计了一种应用于偏振互相关解调仪的复消色差光学系统。该光学系统在光楔长度方向上的轴向色差为1.9×10-4 m-1, 最大光程差为0.021λ0(λ0为中心波长), 光程差远小于F-P腔长。对于特定的解调系统, 采用复消色差光路时, 零级干涉条纹的测量值偏移量为2.85 μm, 小于CCD像素宽度的一半, 并且CCD任意像素的光照度提高了3.75倍。
Abstract
Fiber Fabry-Perot (F-P) sensors have been widely used in the detection of aircraft engines. Polarization cross-correlation demodulation is one of the most common methods for F-P cavity length demodulation. In a polarization cross-correlation demodulation system, the axial chromatic aberration of the optical system will cause the zero-order interference fringe shift and decrease the light intensity, which decreases the demodulation accuracy and the signal amplitude. The effect of axial chromatic aberration of the optical system on demodulation is analyzed. In order to reduce the influence of the axial chromatic aberration of the system on demodulation, an apochromatic optical system used in the polarization cross-correlation demodulation interrogator is introduced. The axial chromatic aberration along the wedge length is 1.9×10-4 m-1, and the maximum optical path difference is 0.021λ0 (λ0 is the central wavelength), which is far less than the F-P cavity length. For a certain demodulation system, the shift of the measured zero-order interference fringe is 2.85 μm, which is less than half of the pixel width of CCD, and the illuminance of any pixel of CCD is improved by 3.75 times.
参考文献

[1] Jiang J F, Liu T G, Zhang Y M, et al. Parallel demodulation system and signal-processing method for extrinsic Fabry-Perot interferometer and fiber Bragg grating sensors[J]. Optics Letters, 2005, 30(6): 604-606.

[2] 何慧灵, 赵春梅, 陈丹, 等. 光纤传感器现状[J]. 激光与光电子学进展, 2004, 41(3): 38-41.

    He Huiling, Zhao Chunmei, Chen Dan, et al. Present status of optic fiber sensors[J]. Laser & Optoelectronics Progress, 2004, 41(3): 38-41.

[3] 裴丽, 翁思俊, 吴良英, 等. 光纤激光传感系统的研究进展[J]. 中国激光, 2016, 43(7): 0700001.

    Pei Li, Weng Sijun, Wu Liangying, et al. Progress in optical fiber laser sensing system[J]. Chinese J Lasers, 2016, 43(7): 0700001.

[4] Murphy K A, Gunther M F, Vengsarkar A M, et al. Fabry-Perot fiber-optic sensors in full-scale fatigue testing on an F-15 aircraft[J]. Applied Optics, 1992, 31(4): 431-433.

[5] Pulliam W J, Russler P M, Fielder R S. High-temperature high-bandwidth fiber optic MEMS pressure-sensor technology for turbine-engine component testing[C]. SPIE, 2002, 4578: 229-239.

[6] Elster J L, Trego A, Catterall C, et al. Flight demonstration of fiber optic sensors[J]. SPIE, 2003, 5050: 34-42.

[7] 王婷婷, 王鸣, 李明, 等. 光纤法布里珀罗腔传感器双波长解调法及波长优化设计[J]. 光学学报, 2005, 25(10): 1297-1301.

    Wang Tingting, Wang Ming, Li Ming, et al. Dual-wavelength demodulation and wavelength optimization for optical fiber Fabry-Pérot sensor[J]. Acta Optica Sinica, 2005, 25(10): 1297-1301.

[8] Cibula E, -Donlagi D. Miniature fiber-optic pressure sensor with a polymer diaphragm[J]. Applied Optics, 2005, 44(14): 2736-2744.

[9] Ma C, Dong B, Gong J M, et al. Decoding the spectra of low-finesse extrinsic optical fiber Fabry-Perot interferometers[J]. Optics Express, 2011, 19(24): 23727-23742.

[10] Zhang X M, Liu Y X, Bae H, et al. Phase modulation with micromachined resonant mirrors for low-coherence fiber-tip pressure sensors[J]. Optics Express, 2009, 17(26): 23965-23974.

[11] Dndliker R, Zimmermann E, Frosio G. Electronically scanned white-light interferometry: A novel noise-resistant signal processing[J]. Optics Letters, 1992, 17(9): 679-681.

[12] Liu T, Fernando G F. A frequency division multiplexed low-finesse fiber optic Fabry-Perot sensor system for strain and displacement measurements[J]. Review of Scientific Instruments, 2000, 71(3): 1275-1278.

[13] 江俊峰, 邹盛亮, 王双, 等. 空间扫描型光纤法布里-珀罗传感器解调中信噪比的影响研究[J]. 光学学报, 2015, 35(11): 1106003.

    Jiang Junfeng, Zou Shengliang, Wang Shuang, at al. Research on signal-to-noise ratio effect in spatial scanning optical fiber Fabry-Perot sensing demodulation system[J]. Acta Optica Sinica, 2015, 35(11): 1106003.

[14] 李磊, 刘铁根, 江俊峰, 等. 光纤F-P传感器偏振互相关解调中光楔参数的影响研究[J]. 光电子·激光, 2012, 23(1): 67-73.

    Li Lei, Liu Tiegen, Jiang Junfeng, et al. Birefringent wedges effects on cross-correlation polarization demodulation in optical Fabry-Perot sensors[J]. Journal of Optoelectronics·Laser, 2012, 23(1): 67-73.

[15] 王小云. 光纤法珀传感器非扫描式相关解调系统研究[D]. 重庆: 重庆大学, 2006: 17-18.

    Wang Xiaoyun. Study on non-scanning correlative demodulation system of optical fiber Fabry-Peort sensor[D]. Chongqing: Chongqing Universtiy, 2006: 17-18.

[16] Duplain G. Low-coherence interferometry optical sensor using a single wedge polarization readout interferometer: US7259862[P]. 2007-08-21.

[17] Wang S, Liu T G, Jiang J F, et al. Zero-fringe demodulation method based on location-dependent birefringence dispersion in polarized low-coherence interferometry[J]. Optics Letters, 2014, 39(7): 1827-1830.

[18] 李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 浙江: 浙江大学出版社, 2014: 128-134.

    Li Xiaotong, Cen Zhaofeng. Geometrical·optics·aberrations and optical design[M]. Zhejiang: Zhejiang University Press, 2014: 128-134.

[19] 陈立武. CE-1成像光谱仪工程化光学技术理论研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2006: 125-136.

    Chen Liwu. The theoretical study of the optical technology of the engineerization of the interference imaging spectrometer of the CE-1 satellite[D]. Xi′an: Xi′an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, 2006: 125-136.

[20] 孟祥娥, 江俊峰, 刘铁根, 等. 空间扫描型光纤法布里-珀罗传感解调系统中CCD的光照度数学模型研究[J]. 光学学报, 2012, 32(11): 1128006.

    Meng Xiang′e, Jiang Junfeng, Liu Tiegen, et al. Mathematical model of illumination of CCD in the space scanning optical fiber Fabry-Perot sensor demodulation system[J]. Acta Optica Sinica, 2012, 32(11): 1128006.

宋凝芳, 宋鹏, 宋镜明, 亢提. 光纤法布里-珀罗传感器偏振互相关解调系统的复消色差光路设计[J]. 中国激光, 2017, 44(12): 1206005. Song Ningfang, Song Peng, Song Jingming, Kang Ti. Design of Apochromatic Optical Path in Polarization Cross-Correlation Demodulation System Based on Fiber Fabry-Perot Sensor[J]. Chinese Journal of Lasers, 2017, 44(12): 1206005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!