光学学报, 2010, 30 (4): 959, 网络出版: 2010-04-20   

正交频分复用信号的全光波长变换性能研究

All-Optical Wavelength Conversion for Orthogonal Frequency Division Multiplexing Optical Signal
作者单位
湖南大学 计算机与通信学院微纳光电器件及应用教育部重点实验室,湖南 长沙 410082
摘要
实验验证了在半导体光放大器(SOA)中基于四波混频(FWM)效应的单抽运、垂直双抽运和平行双抽运对光正交频分复用(OFDM)信号波长变换特性。信号光源经2.5 Gb/s OFDM电信号直接调制后和抽运光耦合,经光放大器后在SOA中实现波长变换。实验结果显示,经SOA的FWM效应后,产生新波长的信号光将携带OFDM信号。实验测量了转换的OFDM信号的误码特性曲线图和星座图,结果表明,平行双抽运模型的系统功率代价最小。实验结果与理论分析是一致的。
Abstract
We experimentally demonstrate three schemes of pumping including single pump,orthogonal-dual-pump and copolarized-dual-pump based on four-wave mixing (FWM) in semiconductor optical amplifier (SOA) for the wavelength conversion of optical amplifier (OFDM) signals. In experiment,the signal continuous-wave (CW) lightwave is modulated directly by 2.5 Gb/s OFDM. The modulated signal lightwave and pump light are coupled and then amplified before they are injected into the SOA for wavelength conversion. Experimental results show that the newly converted wavelength signals carry the original OFDM signals. The bit error rate (BER) curves and received constellations are also measured by experiment,the experimental results show that the copolarized-dual-pump configuration has the smallest system power penalty,which agree well with the theoretical analyses.
参考文献

[1] . Kovacevic,A. Acampora. Benefits of wavelength translation in all-optical clear-channel networks[J]. IEEE J. Select Areas Commun., 1996, 14(5): 868-880.

[2] . J. B. Yoo. Wavelength conversion technologies for WDM network application[J]. J. Lightwave Technol., 1996, 14(6): 955-966.

[3] . M. H. HElmirghani,H. T. Mouftah. All-optical wavelength conversion:technologies and applications in DWDM networks[J]. IEEE Commun. Mag., 2000, 38(3): 86-92.

[4] 张爱旭,于晋龙,王耀天 等. 基于半导体光放大器和整形滤波器的40 Gb/s的归零正码变换波长研究[J]. 光学学报,2008,28(2):249-254

    Zhang Aixu,Yu Jinlong,Wang Yaotian et al.. Noninverted wavelength conversion for 40 Gb/s return-to-zero signal based on semiconductor optical amplifier and optical bandpass filter [J]. Acta Optica Sinica,2008,28(2):249-254

[5] 王子南,徐永钊,张霞 等. 基于微结构光纤中交叉相位调制效应的波长变换 [J]. 中国激光,2008,35(3):414-417

    Wang Zinan,Xu Yongzhao,Zhang Xia et al.. Wavelength convertion based on cross-phase modulation in microstructure fibers [J]. Chinese J. Lasers,2008,35(3):414-417

[6] J. Yu,Z. Jia,Y. K. Yeo et al.. Spectrally non-inverting wavelength conversion based on FWM in HNL-DSF and its application in label switching optical network [J]. In Proc. 25th ECOC,2005. 32-35

[7] . Inoue. Four-wave mixing in an optical fiber in the zero-dispersion wavelength region[J]. J. Lightwave Technol., 1992, 10(11): 1553-1561.

[8] . R. L. Jonathan,A. S. Mark,S.J.Madden. Tunability of polarization-insensitive wavelength converters based on four-wave mixing in semiconductor optical amplifiers[J]. J. Lightwave Technol., 1998, 16(12): 2419-2427.

[9] . . Millimeter-wave frequency tripling based on four-wave mixing in a semiconductor optical amplifier[J]. J. Lightwave Technol., 2006, 24(1): 2460-2462.

[10] . Dawson et al.. Efficiency of broadband four-wave mixing wavelength conversion using semiconductor traveling wave amplifiers[J]. IEEE Photonic. Technol. Lett., 1994, 6(1): 50-52.

[11] . Andres. Microwave-photonic frequency multiplication utilizing optical four-wave mixing and fiber Bragg gratings[J]. J. Lightwave Technol., 2006, 24(1): 329-334.

[12] . Schnabel,U. Hilbk,Th. Hermes et al.. Polarization-insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifer[J]. IEEE Photonic. Technol. Lett., 1994, 6(1): 56-58.

[13] . Ma,J. Yu,C. Yu et al.. Wavelength conversion based on four-wave mixing in high-nonlinear dispersion shifted fiber using a dual-pump configuration[J]. J. Lightwave Technol., 2006, 24(7): 2851-2858.

[14] . M. Jopson,R. E. Tench. Polarization-independent phase conjugation of lightwave signals[J]. Electron. Lett., 1993, 29(25): 2216-2217.

[15] 李兆玺,胡贵军,孔令杰. 自适应调制的正交频分复用多模光纤通信系统性能分析[J]. 中国激光,2008,35(4):582-586

    Li Zhaoxi,Hu Guijun,Kong Lingjie. Performance analysis of a multimode fiber communication system based on the adaptive modulation orthogonal frequency division multiplexing [J]. Chinese J. Lasers,2008,35(4):582-586

[16] . C. Bao,W. Shieh. Transmission of wavelength-division-multiplexing channels with coherent optical OFDM[J]. IEEE Photonic. Technol. Lett., 2007, 19(12): 922-924.

[17] . B. Djordjevic,B. Vasic. Orthogonal frequency division multiplexing for high-speed optical transmission[J]. Opt. Express, 2006, 14(9): 3767-3775.

[18] L. Chen,J. Yu,J. Lu et al.. A radio-over-fiber system with photonics generated OFDM signals and wavelength reuse for upstream data connection [C]. 2008,ICAIT,1-3A-1,Shenzhen,China

[19] 陈林,曹子峥,董泽 等. 直接检测的光OFDM信号光纤传输系统实验研究[J]. 中国激光,2009,36(3):554-557

    Chen Lin,Cao Zizheng,Dong Ze et al.. An experimental system of direct-detection optical OFDM transmission[J]. Chinese J. Lasers,2009,36(3):554-557

周慧, 董泽, 曹子峥, 卢嘉, 何晶, 陈林, 余建军. 正交频分复用信号的全光波长变换性能研究[J]. 光学学报, 2010, 30(4): 959. Zhou Hui, Dong Ze, Cao Zizheng, Lu Jia, He Jing, Chen Lin, Yu Jianjun. All-Optical Wavelength Conversion for Orthogonal Frequency Division Multiplexing Optical Signal[J]. Acta Optica Sinica, 2010, 30(4): 959.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!