Photonic Sensors, 2018, 8 (2): 103, Published Online: Aug. 4, 2018   

Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

Author Affiliations
1 Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, China
2 College of Physics and Optoelectronics, Institute of Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
Abstract
In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 ℃ at the sensing distance of 10.4km.
References

[1] J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electronics Letters, 1985, 21(13): 569-570.

[2] C. Shen, C. Hu, H. Gong, J. Wang, Y. Jin, and Z Zhang, “Distributed optical fiber temperature sensor,” Applied in Underground Coal Gasification System, 2010, 7990: 302-303.

[3] Y. Liu, T. Lei, Z. H. Sun, C. Wang, and T. Y. Li, “Application of distributed optical fiber temperature system in online monitoring and fault diagnosis of smart grid,” in Proceeding of Asia-Pacific Power and Energy Engineering Conference, Jinan, China, 2012, pp. 27-29.

[4] A. F. Fernandez, P. Rodeghiero, B. Brichard, and F. Berghmans, “Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures,” IEEE Transactions on Nuclear Science, 2005, 52(6): 2689-2694.

[5] J. Park, G. Bolognini, D. Lee, P. Kim, P. Cho, and F. D. Pasquale, “Raman-based distributed temperature sensor with simplex coding and link optimization,” IEEE Photonics Technology Letters, 2006, 18(17): 1879-1881.

[6] M. Sun, Y. Q. Tang, J. Li, and F. Z. Dong, “Study on spatial resolution improvement of distributed temperature sensor system by linear fitting algorithm,” in Proceeding of the Chinese-Society- for-Optical-Engineering on Applied Optics and Photonics, Beijing, China, 2015, pp. 5-7.

[7] G. D. B. Vazquez, O. E. Martínez, and D. Kunik “Distributed temperature sensing using cyclic pseudorandom sequences,” IEEE Sensors Journal, 2017, 17(6): 1686-1691.

[8] M. A. Soto, A. Signorini, T. Nannipieri, S. Bolognini, G. Bolognini, and F. D. Pasquale, “Impact of loss variations on double-ended distributed temperature sensors based on Raman anti-Stokes signal only,” Journal of Lightwave Technology, 2012, 30(8): 1215-1222.

[9] W. J. Wang, J. Chang, G. P. Lv, Z. L. Wang, Z. Liu, S. Luo, et al., “Wavelength dispersion analysis on fiber-optic Raman distributed temperature sensor system,” Photonic Sensors, 2013, 3(3): 256-261.

[10] D. Hwang, D. J. Yoon, I. B. Kwon, D. C. Seo, and Y. Chung, “Novel auto-correction method in a fiber-optic distributed-temperature sensor using reflected anti-Stokes Raman scattering,” Optics Express, 2010, 18(10): 9747-9754.

[11] M. A. Soto, A. Signorini, T. Nannipieri, S. Faralli, and G. Bolognini, “High-performance Raman-based distributed fiber-optic sensing under a loop scheme using anti-stokes light only,” IEEE Photonics Technology Letters, 2011, 23(9): 534-536.

[12] Z. Qin, L. Chen, and X. Bao, “Continuous wavelet transform for non-stationary vibration detection with phase-OTDR,” Optics Express, 2012, 20(18): 20459-20465.

[13] C. Y. Ma, T. G. Liu, K. Liu, J. F. Jiang, Z. Y. Ding, X. D. Huang, et al., “A Continuous wavelet transform based time delay estimation method for long range fiber interferometric vibration sensor,” Journal of Lightwave Technology, 2016, 34(16): 3785-3789.

[14] Y. Hu, W. Q. Mo, K. F. Dong, F. Jin, and J. L. Song, “Using maximum spectrum of continuous wavelet transform for demodulation of an overlapped spectrum in a fiber Bragg grating sensor network,” Applied Optics, 2016, 55(17): 4670-4675.

[15] X. Feng, X. T. Zhang, C. G. Sun, M. H. Motamedi, and F. Ansari, “Stationary wavelet transform method for distributed detection of damage by fiber-optic sensors,” American Society of Civil Engineers, 2014, 140(4): 04013004-1.04013004-11.

[16] M. A. Farahani, M. T. V. Wylie, E. Castillo-Guerra, and B. G. Colpitts, “Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques,” Journal of Lightwave Technology, 2012, 30(8): 1134-1142.

[17] Z. Wang, J. Chang, S. Zhang, S. Luo, C. Jia, and S. Jiang, “An improved denoising method in RDTS based on wavelet transform modulus maxima,” IEEE Sensors Journal, 2015, 15(2): 1061-1067.

[18] Z. L. Wang, J. Chang, S. S. Zhang, S. Luo, C. W. Jia, C. W. Jia, et al., “Application of wavelet transform modulus maxima in Raman distributed temperature sensors,” Photonic Sensors, 2014, 4(2): 142-146.

[19] M. A. Soto, T. Nannipieri, A. Signorini, A. Lazzeri, F. Baronti, R. Roncella, et al., “Raman-based distributed temperature sensor with 1 m spatial resolution over 26km SMF using low-repetition-rate cyclic pulse coding,” Optics Letters, 2011, 36(13): 2557-2559.

Jian LI, Yunting LI, Mingjiang ZHANG, Yi LIU, Jianzhong ZHANG, Baoqiang YAN, Dong WANG, Baoquan JIN. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression[J]. Photonic Sensors, 2018, 8(2): 103.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!