强激光与粒子束, 2016, 28 (6): 064128, 网络出版: 2016-04-12  

纳米网络中的太赫兹波大气传输和信道分析

王玉文 1,2,*董志伟 2,3李瀚宇 2,3周逊 3,4
作者单位
1 中国工程物理研究院 研究生部, 北京 100088
2 北京应用物理与计算数学研究所, 北京 100094
3 中国工程物理研究院 太赫兹研究中心, 四川 绵阳 621900
4 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
利用太赫兹大气传输衰减模型, 比对太赫兹时域光谱系统的实验结果, 结合最新的HITRAN数据库, 发展了一个适用于纳米尺度的太赫兹信道分析模型。提出了一个0.1~5 THz宽的信道, 分析了此信道在纳米尺度的传输损耗和最大传输数据率。研究结果表明, 在纳米尺度0.1~5 THz宽的信道的传输数据率达几百Gbit/s, 随着天线增益等硬件性能的不断提升, 信道的最大传输数据率将达Tbit/s, 此研究对于纳米器件之间的快速、大数据量的信息共享具有重要的参考价值。
Abstract
Terahertz (THz) communications are expected to be the next frontier for wireless nanonetworks. Nanonetworks are formed by nanodevices (tiny devices at the nanoscale or molecular scale). The high transmittable data rate for nanonetwork is investigated based on a new model of the THz wave atmospheric propagation of attenuation. The THz wave atmospheric attenuation experimental results obtained from the THz-time domain spectroscopy (THz-TDS) technique are analyzed using this model. The intensity and location of the observed absorption lines are in good agreement with the calculated spectrum. The total path loss and the maximum transmittable data rate are numerically simulated when a THz wave propagates over an extremely short distance. Furthermore, the channel capacity in the THz band (0.1-5 THz) is investigated by this mode. It is shown that the molecular absorption loss is significant in THz band; data with high rates of more than 100 Gbit/s, which take advantage of the unique characteristics in the physical channels while minimizing the impairments of molecular absorption, can be transmitted via the THz channels for a greatly short transmission distance.
参考文献

[1] Akyildiz I F, Brunetti F, Blázquez C. Nanonetworks: A new communication paradigm[J]. Comput Netw, 2008, 52(12): 2260-2279.

[2] AkyildizI F, Jornet J M. Electromagnetic wireless nanosensor networks[J].NanoCommun Netw, 2010, 1(1): 3-19.

[3] Jornet J M, Akyildiz I F. Channel capacity of electromagnetic nanonetworks in the terahertz band[C]//Proceedings of IEEE International Conference on Communications. 2010: 1-6.

[4] Llatser I, Kremers C, Cabellos-Aparicio A, et al. Graphene-based nano-patch antenna for terahertz radiation[J]. Photonics and Nanostructures-Fundamentals and Applications, 2012, 10(4): 353-358.

[5] Liebe H J. MPM—An atmospheric millimeter-wave propagation model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6): 631-650.

[6] Pardo J R, Cernicharo J, Serabyn E. Atmospheric transmission at microwaves (ATM): An improved model for millimeter/submillimeter applications[J]. IEEE Trans Antennas and Propagation, 2002, 49(12): 1683-1694.

[7] Slocum D M, Slingerland E J, Giles R H, et al. Atmospheric absorption of terahertz radiation and water vapor continuum effects[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 127: 49-63.

[8] Yang Yihong, Mandehgar M, Grischkowsky D. Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory[J]. Optics Express, 2014, 22(4): 4388-4403.

[9] Wang Yuwen, Dong Zhiwei, Zhou Xun, et al. THz atmospheric attenuation model[J]. High Power Laser and Particle Beams, 2015, 27: 103218

[10] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN 2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy &Radiative Transfer, 2013, 130: 4-50.

[11] Leforestier C, Tipping R H, Ma Q. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. II. Dimers and collision-induced absorption[J]. Journal of Chemical Physics, 2010, 132: 164302.

[12] Pardo J R, Cernicharo J, Serabyn E. Submillimeter atmospheric transmission measurements on Mauna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2001, 68(4): 419-433.

[13] Siles G A, Riera J M, Garcia-del-Pino P. THz propagation research within the TERASENSE project: Atmospheric gases attenuation[C]//Proc of the 4th European Conference on Antennas and Propagation. 2010: 1-5.

[14] Pierobon M, Jornet J M, Akkari N, et al. A routing framework for energy harvesting wireless nanosensor networks in the THz band[J]. Wireless Netw, 2014, 20(5): 1169-1183.

[15] Mottonen V S, Raisanen A V. General-purpose fifth-harmonic waveguide mixer for 500-700 GHz[C]//Proc of 34th European Microwave Conference. 2004, 3: 1145-1147.

[16] Ojefors E, Heinemann B, Pfeiffer U. Subharmonic 220-and 320- GHz SiGe HBT receiver frontends[J]. IEEE Trans Microwave Theory and Techniques, 2012, 60(5): 1397-1404.

王玉文, 董志伟, 李瀚宇, 周逊. 纳米网络中的太赫兹波大气传输和信道分析[J]. 强激光与粒子束, 2016, 28(6): 064128. Wang Yuwen, Dong Zhiwei, Li Hanyu, Zhou Xun. [J]. High Power Laser and Particle Beams, 2016, 28(6): 064128.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!