光电工程, 2020, 47 (9): 190540, 网络出版: 2020-10-27  

纳米氧化锌掺杂液晶/聚合物膜的阻抗谱特性

Impedance spectroscopy characteristics of nano ZnO doped liquid crystal/polymer film
朱清 1,2,*刘悠嵘 1,2江志鹏 1,2郑继红 1,2
作者单位
1 上海理工大学光电信息与计算机学院,上海 200093
2 上海理工大学上海市现代光学系统重点实验室,上海 200093
摘要
本文研究了采用纳米氧化锌棒掺杂的聚合物分散液晶(PDLC)的电阻抗谱特性及其传感应用。利用聚合物分散液晶薄膜具有稳固结构、能抵御机械冲击、容易制备等特点,在材料中掺杂纳米氧化锌棒,通过电阻抗谱性质分析,实现对极性分子如乙醇气体的传感功能。通过对比实验,研究分析了薄膜在遇到乙醇分子时的复阻抗谱的变化,并建立了电化学等效电路,发现该薄膜能有效地实现对乙醇分子的传感功能。并进一步分析研究了该检测传感的灵敏度和响应时间等特性。结果表明,以纳米氧化锌棒掺杂 PDLC薄膜有望作为检测乙醇等极性的气体传感器,具有高灵敏度、结构稳定、重复性高、易于制造等优点。
Abstract
In this paper, the electrical impedance spectroscopy characteristics of polymer dispersed liquid crystal (PDLC) doped with nano-zinc oxide rods and its sensing applications are studied. Polymer dispersed liquid crystal films have the characteristics of stable structure, resistance to mechanical impact and easy preparation. By doping nano-zinc oxide rods into the material, the sensing function of polar molecules such as ethanol gas can be realized through the analysis of electrical impedance spectroscopy. In this paper, the complex impedance spectra of thin films encountering ethanol molecules are studied and analyzed through comparative experiments. In addition, the elec-trochemical equivalent circuit was established and analyzed. It was found that the film could sensitively and effec-tively realize the sensing function of the ethanol molecules. The sensitivity and response time of the sensor are fur-ther analyzed and studied. The experimental study and analysis show that nano-zinc oxide rod doped PDLC film is expected to be used as a gas sensor for detecting polarity of ethanol and other materials. It has the advantages of high sensitivity, stable structure, high repeatability, and easy fabrication.
参考文献

[1] Torres J C, Vergaz R, Barrios D, et al. Frequency and temper-ature dependence of fabrication parameters in polymer dis-persed liquid crystal devices[J]. Materials, 2014, 7(5): 3512–3521.

    Torres J C, Vergaz R, Barrios D, et al. Frequency and temper-ature dependence of fabrication parameters in polymer dis-persed liquid crystal devices[J]. Materials, 2014, 7(5): 3512–3521.

[2] Jiang J H, McGraw G, Ma R Q, et al. Selective scattering po-lymer dispersed liquid crystal film for light enhancement of or-ganic light emitting diode[J]. Optics Express, 2017, 25(4): 3327–3335.

    Jiang J H, McGraw G, Ma R Q, et al. Selective scattering po-lymer dispersed liquid crystal film for light enhancement of or-ganic light emitting diode[J]. Optics Express, 2017, 25(4): 3327–3335.

[3] Kafy A, Sadasivuni K K, Kim H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5923–5931.

    Kafy A, Sadasivuni K K, Kim H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5923–5931.

[4] Mohanapriya M K, Deshmukh K, Chidambaram K, et al. Poly-vinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device appli-cations[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 6099–6111.

    Mohanapriya M K, Deshmukh K, Chidambaram K, et al. Poly-vinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device appli-cations[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 6099–6111.

[5] Ponnamma D, Varughese K T, Al-Maadeed M A A, et al. Curing enhancement and network effects in multi-walled carbon na-notube-filled vulcanized natural rubber: evidence for solvent sensing[J]. Polymer International, 2017, 66(6): 931–938.

    Ponnamma D, Varughese K T, Al-Maadeed M A A, et al. Curing enhancement and network effects in multi-walled carbon na-notube-filled vulcanized natural rubber: evidence for solvent sensing[J]. Polymer International, 2017, 66(6): 931–938.

[6] Deshmukh K, Ahamed M B, Sadasivuni K K, et al. Solu-tion-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and di-electric properties for electronic encapsulation[J]. Journal of Polymer Research, 2017, 24(2): 27.

    Deshmukh K, Ahamed M B, Sadasivuni K K, et al. Solu-tion-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and di-electric properties for electronic encapsulation[J]. Journal of Polymer Research, 2017, 24(2): 27.

[7] Popov N, Honaker L W, Popova M, et al. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors[J]. Materials, 2018, 11(1): 20.

    Popov N, Honaker L W, Popova M, et al. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors[J]. Materials, 2018, 11(1): 20.

[8] Stodolak E, Paluszkiewicz C, Bogun M, et al. Nanocomposite fibres for medical applications[J]. Journal of Molecular Structure, 2009, 924–926: 208–213.

    Stodolak E, Paluszkiewicz C, Bogun M, et al. Nanocomposite fibres for medical applications[J]. Journal of Molecular Structure, 2009, 924–926: 208–213.

[9] Song S, Jeong J, Chung S H, et al. Electroluminescent devices with function of electro-optic shutter[J]. Optics Express, 2012, 20(19): 21074–21082.

    Song S, Jeong J, Chung S H, et al. Electroluminescent devices with function of electro-optic shutter[J]. Optics Express, 2012, 20(19): 21074–21082.

[10] Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Advances in OptoE-lectronics, 2008, 2008: 684349.

    Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Advances in OptoE-lectronics, 2008, 2008: 684349.

[11] Jiang S M, Zhou H W, Tian Y Q. The molecular structure and the arrangement changes of stilbazoles in the phase transition process studied by temperature-variable FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2000, 20(6): 758–760.姜世梅, 周宏伟 , 田颜清. 苯乙烯基吡啶类液晶化合物的分子结构及相变过程的光谱研究[J].光谱学与光谱分析, 2000, 20(6): 758–760.

    Jiang S M, Zhou H W, Tian Y Q. The molecular structure and the arrangement changes of stilbazoles in the phase transition process studied by temperature-variable FTIR spectroscopy[J]. Spectroscopy and Spectral Analysis, 2000, 20(6): 758–760.姜世梅, 周宏伟 , 田颜清. 苯乙烯基吡啶类液晶化合物的分子结构及相变过程的光谱研究[J].光谱学与光谱分析, 2000, 20(6): 758–760.

[12] Wang Y J, Guo Z Y. Optical phase conjugate in Azo-dye-doped liquid crystals cell[J]. Acta Optica Sinica, 1994, 14(9): 1005–1008. 王勇竞 , 郭转运 . 使用掺杂液晶的相共轭器件的研究 [J]. 光学学报, 1994, 14(9): 1005–1008.

    Wang Y J, Guo Z Y. Optical phase conjugate in Azo-dye-doped liquid crystals cell[J]. Acta Optica Sinica, 1994, 14(9): 1005–1008. 王勇竞 , 郭转运 . 使用掺杂液晶的相共轭器件的研究 [J]. 光学学报, 1994, 14(9): 1005–1008.

[13] Song J, Ma J, Liu Y G, et al. Preparation and electric-optical characteristic of polymer network stabilized liquid crystal grat-ing[J]. Opto-Electronic Engineering, 2006, 33(4): 141–144.宋静, 马骥, 刘永刚 , 等. 聚合物网络稳定液晶光栅的制备与特性研究[J].光电工程, 2006, 33(4): 141–144.

    Song J, Ma J, Liu Y G, et al. Preparation and electric-optical characteristic of polymer network stabilized liquid crystal grat-ing[J]. Opto-Electronic Engineering, 2006, 33(4): 141–144.宋静, 马骥, 刘永刚 , 等. 聚合物网络稳定液晶光栅的制备与特性研究[J].光电工程, 2006, 33(4): 141–144.

[14] Zhang M H, Zheng J H, Tang P Y, et al. High efficiency na-no-silver-doped holographic polymer dispersed liquid crystal grating[J]. Acta Optica Sinica, 2013, 33(1): 0105002. 张梦华, 郑继红 , 唐平玉, 等. 纳米银掺杂的高效率全息聚合物分散液晶光栅制备[J].光学学报, 2013, 33(1): 0105002.

    Zhang M H, Zheng J H, Tang P Y, et al. High efficiency na-no-silver-doped holographic polymer dispersed liquid crystal grating[J]. Acta Optica Sinica, 2013, 33(1): 0105002. 张梦华, 郑继红 , 唐平玉, 等. 纳米银掺杂的高效率全息聚合物分散液晶光栅制备[J].光学学报, 2013, 33(1): 0105002.

[15] Lu F Y, Zheng J H, Wang K N, et al. Electrically controlled holographic varied line-spacing grating based on polymer dis-persed liquid crystal[J]. Opto-Electronic Engineering, 2017, 44(3): 351–355.陆飞跃, 郑继红 , 王康妮, 等. 聚合物分散液晶电控全息变间距光栅[J].光电工程, 2017, 44(3): 351–355.

    Lu F Y, Zheng J H, Wang K N, et al. Electrically controlled holographic varied line-spacing grating based on polymer dis-persed liquid crystal[J]. Opto-Electronic Engineering, 2017, 44(3): 351–355.陆飞跃, 郑继红 , 王康妮, 等. 聚合物分散液晶电控全息变间距光栅[J].光电工程, 2017, 44(3): 351–355.

[16] Lai Y T, Kuo J C, Yang Y J. Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application[J]. Applied Physics Letters, 2013, 102(19): 191912.

    Lai Y T, Kuo J C, Yang Y J. Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application[J]. Applied Physics Letters, 2013, 102(19): 191912.

[17] Lai Y T, Kuo J C, Yang Y J. A novel gas sensor using poly-mer-dispersed liquid crystal doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 2014, 215: 83–88.

    Lai Y T, Kuo J C, Yang Y J. A novel gas sensor using poly-mer-dispersed liquid crystal doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 2014, 215: 83–88.

[18] .ztrk S, Kemen A, Kemen Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room tempera-ture VOC sensors[J]. Sensors and Actuators B: Chemical, 2016, 222: 280–289.

    .ztrk S, Kemen A, Kemen Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room tempera-ture VOC sensors[J]. Sensors and Actuators B: Chemical, 2016, 222: 280–289.

[19] Arfin T, Rangari S N. Graphene oxide–ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods, 2018, 10(3): 347–358.

    Arfin T, Rangari S N. Graphene oxide–ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods, 2018, 10(3): 347–358.

[20] Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258–266.

    Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258–266.

[21] Zhang X T, Liu Y C, Ma J G, et al. Study of Luminescence cha-racterization on nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films[J]. Chinese Journal of Lasers, 2002, 29(S1): 491–493.张喜田, 刘益春 , 马剑钢, 等. 热氧化制备纳米氧化锌薄膜的光致发光特性研究[J].中国激光, 2002, 29(S1): 491–493.

    Zhang X T, Liu Y C, Ma J G, et al. Study of Luminescence cha-racterization on nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films[J]. Chinese Journal of Lasers, 2002, 29(S1): 491–493.张喜田, 刘益春 , 马剑钢, 等. 热氧化制备纳米氧化锌薄膜的光致发光特性研究[J].中国激光, 2002, 29(S1): 491–493.

[22] Srivastava S, Srivastava A K, Singh P, et al. Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric in-vestigation[J]. Journal of Alloys and Compounds, 2015, 644: 597–601.

    Srivastava S, Srivastava A K, Singh P, et al. Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric in-vestigation[J]. Journal of Alloys and Compounds, 2015, 644: 597–601.

[23] Ponnamma D, Cabibihan J J, Rajan M, et al. Synthesis, opti-mization and applications of ZnO/polymer nanocomposites[J]. Materials Science and Engineering: C, 2019, 98: 1210–1240.

    Ponnamma D, Cabibihan J J, Rajan M, et al. Synthesis, opti-mization and applications of ZnO/polymer nanocomposites[J]. Materials Science and Engineering: C, 2019, 98: 1210–1240.

[24] Galoppini E, Rochford J N, Chen H H, et al. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16159–16161.

    Galoppini E, Rochford J N, Chen H H, et al. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16159–16161.

[25] Matei A, Cernica I, Cadar O, et al. Synthesis and characteriza-tion of ZnO–polymer nanocomposites[J]. International Journal of Material Forming, 2008, 1(1): 767–770.

    Matei A, Cernica I, Cadar O, et al. Synthesis and characteriza-tion of ZnO–polymer nanocomposites[J]. International Journal of Material Forming, 2008, 1(1): 767–770.

[26] Xuan T M, Yin GL, Ge M Y, et al. Research progress on Na-no-ZnO gas sensors[J]. Materials Review, 2015, 29(1): 132–136. 宣天美, 尹桂林, 葛美英, 等. 纳米 ZnO气敏传感器研究进展[J].材料导报, 2015, 29(1): 132–136.

    Xuan T M, Yin GL, Ge M Y, et al. Research progress on Na-no-ZnO gas sensors[J]. Materials Review, 2015, 29(1): 132–136. 宣天美, 尹桂林, 葛美英, 等. 纳米 ZnO气敏传感器研究进展[J].材料导报, 2015, 29(1): 132–136.

[27] Abdollahi H, Samkan M, Hashemi M M. Facile and fast elec-trospinning of crystalline ZnO 3D interconnected nanoporous nanofibers for ammonia sensing application[J]. Microsystem Technologies, 2018, 24(9): 3741–3749.

    Abdollahi H, Samkan M, Hashemi M M. Facile and fast elec-trospinning of crystalline ZnO 3D interconnected nanoporous nanofibers for ammonia sensing application[J]. Microsystem Technologies, 2018, 24(9): 3741–3749.

[28] XuW H, Han E H,Wang Z Y, et al. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64–75.

    XuW H, Han E H,Wang Z Y, et al. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64–75.

[29] Maximean D M, Danila O, Almeida P L, et al. Electrical proper-ties of a liquid crystal dispersed in an electrospun cellulose acetate network[J]. Beilstein Journal of Nanotechnology, 2018, 9: 155–163.

    Maximean D M, Danila O, Almeida P L, et al. Electrical proper-ties of a liquid crystal dispersed in an electrospun cellulose acetate network[J]. Beilstein Journal of Nanotechnology, 2018, 9: 155–163.

[30] Belyaev B A, Drokin N A, Maslennikov A N. Impedance spec-troscopy investigation of liquid crystals doped with ionic sur-factants[J]. Physics of the Solid State, 2014, 56(7): 1455–1462.

    Belyaev B A, Drokin N A, Maslennikov A N. Impedance spec-troscopy investigation of liquid crystals doped with ionic sur-factants[J]. Physics of the Solid State, 2014, 56(7): 1455–1462.

[31] Szyp.owska A, Nakonieczna A, Wilczek A, et al. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids[J]. Sensor, 2013, 13(10): 13301–13317.

    Szyp.owska A, Nakonieczna A, Wilczek A, et al. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids[J]. Sensor, 2013, 13(10): 13301–13317.

[32] Shi Z Q, Shao L S, Zhang Y L, et al. Fabrication of poly-mer-dispersed liquid crystals with low driving voltage based on the thiol-ene click reaction[J]. Polymer International, 2017, 66(7): 1094–1098.

    Shi Z Q, Shao L S, Zhang Y L, et al. Fabrication of poly-mer-dispersed liquid crystals with low driving voltage based on the thiol-ene click reaction[J]. Polymer International, 2017, 66(7): 1094–1098.

[33] Deshmukh R R, Katariya-Jain A. Novel techniques of PDLC film preparation furnishing manifold properties in a single device[J]. Liquid Crystals, 2016, 43(2): 256–267.

    Deshmukh R R, Katariya-Jain A. Novel techniques of PDLC film preparation furnishing manifold properties in a single device[J]. Liquid Crystals, 2016, 43(2): 256–267.

[34] Studenyak I P, Kop.anskP, Timko M, et al. Effects of non-additive conductivity variation for a nematic liquid crystal caused by magnetite and carbon nanotubes at various scales[J]. Liquid Crystals, 2017, 44(11): 1709–1716.

    Studenyak I P, Kop.anskP, Timko M, et al. Effects of non-additive conductivity variation for a nematic liquid crystal caused by magnetite and carbon nanotubes at various scales[J]. Liquid Crystals, 2017, 44(11): 1709–1716.

[35] Stark H. Physics of colloidal dispersions in nematic liquid crys-tals[J]. Physics Reports, 2001, 351(6): 387–474.

    Stark H. Physics of colloidal dispersions in nematic liquid crys-tals[J]. Physics Reports, 2001, 351(6): 387–474.

[36] Mirzaei A, Park S, Kheel H, et al. ZnO-capped nanorod gas sensors[J]. Ceramics International, 2016, 42(5): 6187–6197.

    Mirzaei A, Park S, Kheel H, et al. ZnO-capped nanorod gas sensors[J]. Ceramics International, 2016, 42(5): 6187–6197.

[37] Sun S J, Fan H Q. Hydrothermal synthesis and gas sensor properties of three-dimensional ZnO nano folwers[J]. Electronic Components and Materials, 2017, 36(5): 62–66. 孙社稷, 樊慧庆. 三维花状氧化锌纳米结构的水热合成与气敏特性[J].电子元件与材料, 2017, 36(5): 62–66.

    Sun S J, Fan H Q. Hydrothermal synthesis and gas sensor properties of three-dimensional ZnO nano folwers[J]. Electronic Components and Materials, 2017, 36(5): 62–66. 孙社稷, 樊慧庆. 三维花状氧化锌纳米结构的水热合成与气敏特性[J].电子元件与材料, 2017, 36(5): 62–66.

朱清, 刘悠嵘, 江志鹏, 郑继红. 纳米氧化锌掺杂液晶/聚合物膜的阻抗谱特性[J]. 光电工程, 2020, 47(9): 190540. Zhu Qing, Liu Yourong, Jiang Zhipeng, Zheng Jihong. Impedance spectroscopy characteristics of nano ZnO doped liquid crystal/polymer film[J]. Opto-Electronic Engineering, 2020, 47(9): 190540.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!