红外技术, 2023, 45 (12): 1294, 网络出版: 2024-01-17  

多波段图像融合系统光轴平行性装调技术研究

Research on Optical Axis Parallelism Adjustment Technology for Multi band Image Fusion System
作者单位
云南北方光电仪器有限公司, 云南昆明 650032
摘要
摘要: 本文基于一种多波段图像融合系统, 对系统光轴平行性装调技术进行研究。系统为五光轴平行系统, 包括白光模块、微光模块、短波红外模块、长波红外模块、激光测距模块, 通过计算得到精度最高的为微光模块, 精度为 32.09., 即平行性偏差小于 32.09.不影响系统使用。装调时采用光轴中心与平行光管十字靶板中心对准的方法, 得到的图像为最大图像尺寸的 99.89%, 对图像信息获取不产生影响。最后用搭建好的平台对系统进行实验验证, 实验证明平行性最大偏差为 9″, 小于系统最大允许误差, 所以得出结论该装调方法对类似产品的装调具有一定参考价值。
Abstract
This article is based on a multiband image fusion system and studies the alignment technology of the parallelism of the optical axis of the system. The five-axis parallel system includes a white light module, low light level module, short wave infrared module, long wave infrared module, and laser ranging module. The lowest light level module with the highest accuracy was 32.09. A parallelism deviation of less than 32.09 does not impact the system's usability. During installation and adjustment, the optical axis was aligned with the center of the collimator cross-target plate. This alignment produced an image size that is 99.89% of the maximum possible, which does not hinder the acquisition of image information. Finally, the system is verified experimentally using the developed platform. Experiments proved that the maximum deviation of the parallelism was nine, which is less than the maximum allowable error of the system. Therefore, this assembly and adjustment method had a certain reference value for the assembly and adjustment of similar products.
参考文献

[1] 谢国兵, 李超良, 蔡锦浩, 等. 激光测距机光轴平行性测试方法 [J]. 电子测试, 2020(19): 48-51. XIE Guobing, LI Chaoliang, CAI Jinhao, et al. Test method for optical axis parallelism of laser rangefinder[J]. Electronic Testing, 2020(19): 48-51

[2] 贾文武, 刘培正, 唐自力, 等. 靶场适用的光电经纬仪光轴平行性检测[J].光学精密工程 , 2020, 28(8): 1670-1677. JIA Wenwu, LIU Peizheng, TANG Zili, et al. Detection of optical axis parallelism using photoelectric theodolites suitable for shooting ranges[J]. Optical Precision Engineering, 2020, 28(8): 1670-1677

[3] 杨雪, 陈文红 , 张玺, 等. 宽光谱光电系统多光轴平行性工程化测试方法研究[J].激光与红外 , 2019, 49(8): 978-982. YANG Xue, CHEN Wenhong, ZHANG Xi, et al. Research on engineering testing method for multi axis parallelism of wide spectral optoelectronic systems [J]. Laser and Infrared, 2019, 49(8): 978-982

[4] 王瑶, 李岩, 付跃刚. 便携式可见光多光轴平行性校正系统 [J].长春理工大学学报(自然科学版 ), 2019, 42(2): 65-68. WANG Yao, LI Yan, FU Yuegang. Portable visible light multi axis parallelism correction system[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2019, 42(2): 65-68

[5] 赵玮, 昌明, 刘虎, 等. 空间旋转多光轴平行性校准技术 [J].应用光学, 2018, 39(5): 627-632. ZHAO Wei, CHANG Ming, LIU Hu, et al. Multi axis parallelism calibration technique for spatial rotation[J]. Applied Optics, 2018, 39(5): 627-632.

[6] 徐丹慧, 唐霞辉, 方国明, 等. 基于干涉条纹的光轴平行性校准方法 [J].光学学报 , 2020, 40(17): 129-136. XU Danhui, TANG Xiahui, FANG Guoming, et al. A calibration method for optical axis parallelism based on interference fringes[J]. Journal of Optics, 2020, 40(17): 129-136

[7] ZOU Huihui, WU Hongbing, ZHOU Lujun. A testing method of optical axes parallelism of shipboard photoelectrical theodolite[J]. China Satellite Maritime Tracking and Control (China), 2016, 9684: 96841V-96841V-5.

[8] 谢国兵, 薛永刚, 晁格平, 等. 基于 LABVIEW的多光轴平行性测试方法[J].应用光学 , 2018, 39(6): 856-861. XIE Guobing, XUE Yonggang, CHAO Geping, et al. Multi axis parallelism testing method based on LABVIEW[J]. Applied Optics, 2018, 39(6): 856-861.

[9] 应家驹, 陈玉丹, 武东生, 等. 双目光轴平行性检校仪检测精度分析 [J]. 激光与红外, 2018, 48(6): 750-755. YING Jiaju, CHEN Yudan, WU Dongsheng, et al. Analysis of testing accuracy of binocular optical axis parallelism calibration instrument[J]. Laser and Infrared, 2018, 48(6): 750-755.

[10] 崔启胤. 大间距光轴平行性检测方法研究 [D].长春: 长春理工大学, 2018. CUI Qiyin. Research on the Detection Method of Large Distance Optical Axis Parallelism[D]. Changchun: Changchun University of Technology, 2018.

[11] 王志强. 350 mm口径离轴反射式平行光管的设计 [D].长春: 长春理工大学, 2020. WANG Zhiqiang. Design of 350 mm Off-axis Reflective Collimator[D]. Changchun: Changchun University of Technology, 2020.

[12] YING Jiaju, CHEN Yudan, LIU Jie, et al. Design and realization of photoelectric instrument binocular optical axis parallelism calibration system[C]//Proc. Of on SPIE on Optical Measurement Technology and Instrumentation, 2016: 10155: 101550X.

[13] 黄富瑜, 李刚, 史云胜 , 等. 多光谱多光轴平行性检测方案设计与误差分析[J].光电工程 , 2019, 46(2): 12-20. HUANG Fuyu, LI Gang, SHI Yunsheng, et al. Design and error analysis of multi spectral and multi axis parallelism detection scheme[J]. Optoelectronic Engineering, 2019, 46(2): 12-20.

张奇, 陆庆华, 郭骞, 张春鹏, 皮冬明, 向柳静, 文洪青, 何新宇. 多波段图像融合系统光轴平行性装调技术研究[J]. 红外技术, 2023, 45(12): 1294. ZHANG Qi, LU Qinghua, GUO Qian, ZHANG Chunpeng, PI Dongming, XIANG Liujing, WEN Hongqing, HE Xinyu. Research on Optical Axis Parallelism Adjustment Technology for Multi band Image Fusion System[J]. Infrared Technology, 2023, 45(12): 1294.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!