光学学报, 2019, 39 (6): 0601003, 网络出版: 2019-06-17   

基于相关计算的激光雷达二维风场探测 下载: 998次

Two-Dimensional Wind Field Measurement Based on Lidar Signal Correlation
作者单位
1 中国科学院合肥物质科学研究院医学物理与技术中心医学物理与技术安徽省重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院合肥物质科学研究院安徽光学精密机械研究所基础科学研究中心, 安徽 合肥 230031
引用该论文

张战盈, 蔡熠, 余东升, 陈海燕, 方蔚恺, 杨喆, 徐青山, 储焰南, 徐赤东. 基于相关计算的激光雷达二维风场探测[J]. 光学学报, 2019, 39(6): 0601003.

Zhanying Zhang, Yi Cai, Dongsheng Yu, Haiyan Chen, Weikai Fang, Zhe Yang, Qingshan Xu, Yannan Chu, Chidong Xu. Two-Dimensional Wind Field Measurement Based on Lidar Signal Correlation[J]. Acta Optica Sinica, 2019, 39(6): 0601003.

参考文献

[1] 蔡子颖, 韩素芹, 邱晓滨, 等. 基于255 m气象塔天津地区污染天气高空风特征研究[J]. 环境科学学报, 2018, 38(9): 3406-3413.

    蔡子颖, 韩素芹, 邱晓滨, 等. 基于255 m气象塔天津地区污染天气高空风特征研究[J]. 环境科学学报, 2018, 38(9): 3406-3413.

    Cai Z Y, Han S Q, Qiu X B, et al. The characteristics of high-altitude wind about the analysis of pollution weather by 255 meters meteorological tower in Tianjin[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3406-3413.

    Cai Z Y, Han S Q, Qiu X B, et al. The characteristics of high-altitude wind about the analysis of pollution weather by 255 meters meteorological tower in Tianjin[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3406-3413.

[2] 张洪玮, 吴松华, 尹嘉萍, 等. 基于短距相干测风激光雷达的机场低空风切变观测[J]. 红外与毫米波学报, 2018, 37(4): 468-476.

    张洪玮, 吴松华, 尹嘉萍, 等. 基于短距相干测风激光雷达的机场低空风切变观测[J]. 红外与毫米波学报, 2018, 37(4): 468-476.

    Zhang H W, Wu S H, Yin J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 468-476.

    Zhang H W, Wu S H, Yin J P, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 468-476.

[3] 王东祥, 宋小全, 冯长中, 等. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(s1): s101001.

    王东祥, 宋小全, 冯长中, 等. 相干多普勒激光雷达观测渤黄海海洋大气边界层高度研究[J]. 光学学报, 2015, 35(s1): s101001.

    Wang D X, Song X Q, Feng C Z, et al. Coherent Doppler lidar observations of marine atmospheric boundary layer height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 2015, 35(s1): s101001.

    Wang D X, Song X Q, Feng C Z, et al. Coherent Doppler lidar observations of marine atmospheric boundary layer height in the Bohai and Yellow Sea[J]. Acta Optica Sinica, 2015, 35(s1): s101001.

[4] Fiedler B H, Bukovsky M S. The effect of a giant wind farm on precipitation in a regional climate model[J]. Environmental Research Letters, 2011, 6(4): 045101.

    Fiedler B H, Bukovsky M S. The effect of a giant wind farm on precipitation in a regional climate model[J]. Environmental Research Letters, 2011, 6(4): 045101.

[5] 王国成, 孙东松, 段连飞, 等. 多普勒测风激光雷达风场数据影响因素分析[J]. 光学学报, 2015, 35(9): 0901003.

    王国成, 孙东松, 段连飞, 等. 多普勒测风激光雷达风场数据影响因素分析[J]. 光学学报, 2015, 35(9): 0901003.

    Wang G C, Sun D S, Duan L F, et al. Analysis of factors affecting the data accuracy of Doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(9): 0901003.

    Wang G C, Sun D S, Duan L F, et al. Analysis of factors affecting the data accuracy of Doppler wind lidar[J]. Acta Optica Sinica, 2015, 35(9): 0901003.

[6] 冯长中, 吴松华, 刘秉义. 相干多普勒激光雷达风场反演方法研究与实验印证[J]. 中国激光, 2018, 45(4): 0410001.

    冯长中, 吴松华, 刘秉义. 相干多普勒激光雷达风场反演方法研究与实验印证[J]. 中国激光, 2018, 45(4): 0410001.

    Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experimental verification[J]. Chinese Journal of Lasers, 2018, 45(4): 0410001.

    Feng C Z, Wu S H, Liu B Y. Research on wind retrieval method of coherent Doppler lidar and experimental verification[J]. Chinese Journal of Lasers, 2018, 45(4): 0410001.

[7] 赵萌, 郭磐, 芮训豹, 等. 低信噪比下相干多普勒激光雷达风场矢量反演算法[J]. 中国激光, 2018, 45(11): 1110005.

    赵萌, 郭磐, 芮训豹, 等. 低信噪比下相干多普勒激光雷达风场矢量反演算法[J]. 中国激光, 2018, 45(11): 1110005.

    Zhao M, Guo P, Rui X B, et al. Wind-field vector retrieval method at low signal-to-noise ratio for coherent Doppler lidar[J]. Chinese Journal of Lasers, 2018, 45(11): 1110005.

    Zhao M, Guo P, Rui X B, et al. Wind-field vector retrieval method at low signal-to-noise ratio for coherent Doppler lidar[J]. Chinese Journal of Lasers, 2018, 45(11): 1110005.

[8] 上官明佳, 夏海云, 舒志峰, 等. 双边缘瑞利测风技术中信号通道分光比对风速反演的影响[J]. 中国激光, 2014, 41(7): 0714001.

    上官明佳, 夏海云, 舒志峰, 等. 双边缘瑞利测风技术中信号通道分光比对风速反演的影响[J]. 中国激光, 2014, 41(7): 0714001.

    Shangguan M J, Xia H Y, Shu Z F, et al. Effect of splitting ratio on the inversion of wind in the dual edge Rayleigh wind measurement technology[J]. Chinese Journal of Lasers, 2014, 41(7): 0714001.

    Shangguan M J, Xia H Y, Shu Z F, et al. Effect of splitting ratio on the inversion of wind in the dual edge Rayleigh wind measurement technology[J]. Chinese Journal of Lasers, 2014, 41(7): 0714001.

[9] 舒志峰, 徐文静, 唐磊, 等. 基于瑞利散射的测风激光雷达研制[J]. 红外与激光工程, 2011, 40(11): 2153-2157.

    舒志峰, 徐文静, 唐磊, 等. 基于瑞利散射的测风激光雷达研制[J]. 红外与激光工程, 2011, 40(11): 2153-2157.

    Shu Z F, Xu W J, Tang L, et al. Development of wind lidar based on Rayleigh scattering[J]. Infrared and Laser Engineering, 2011, 40(11): 2153-2157.

    Shu Z F, Xu W J, Tang L, et al. Development of wind lidar based on Rayleigh scattering[J]. Infrared and Laser Engineering, 2011, 40(11): 2153-2157.

[10] 沈法华, 夏益祺, 於爱爱, 等. 基于法布里-珀罗标准具四边缘技术的双频率多普勒激光雷达研究[J]. 光学学报, 2014, 34(10): 1001002.

    沈法华, 夏益祺, 於爱爱, 等. 基于法布里-珀罗标准具四边缘技术的双频率多普勒激光雷达研究[J]. 光学学报, 2014, 34(10): 1001002.

    Shen F H, Xia Y Q, Yu A A, et al. Research on dual-frequency Doppler lidar based on Fabry-Perot etalon quad-edge technique[J]. Acta Optica Sinica, 2014, 34(10): 1001002.

    Shen F H, Xia Y Q, Yu A A, et al. Research on dual-frequency Doppler lidar based on Fabry-Perot etalon quad-edge technique[J]. Acta Optica Sinica, 2014, 34(10): 1001002.

[11] Kolev I, Parvanov O, Kaprielov B. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer[J]. Applied Optics, 1988, 27(12): 2524-2531.

    Kolev I, Parvanov O, Kaprielov B. Lidar determination of winds by aerosol inhomogeneities: motion velocity in the planetary boundary layer[J]. Applied Optics, 1988, 27(12): 2524-2531.

[12] Hooper W P, Eloranta E W. Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon[J]. Journal of Applied Meteorology and Climatology, 1986, 25(7): 990-1001.

    Hooper W P, Eloranta E W. Lidar measurements of wind in the planetary boundary layer: the method, accuracy and results from joint measurements with radiosonde and kytoon[J]. Journal of Applied Meteorology and Climatology, 1986, 25(7): 990-1001.

[13] Clemesha B R. Kirchhoff V W J H, Simonich D M. Remote measurement of tropospheric and stratospheric winds by ground based lidar[J]. Applied Optics, 1981, 20(17): 2907-2910.

    Clemesha B R. Kirchhoff V W J H, Simonich D M. Remote measurement of tropospheric and stratospheric winds by ground based lidar[J]. Applied Optics, 1981, 20(17): 2907-2910.

[14] Mayor S D, Eloranta E W. Two-dimensional vector wind fields from volume imaging lidar data[J]. Journal of Applied Meteorology and Climatology, 2001, 40(8): 1331-1346.

    Mayor S D, Eloranta E W. Two-dimensional vector wind fields from volume imaging lidar data[J]. Journal of Applied Meteorology and Climatology, 2001, 40(8): 1331-1346.

[15] Buttler W T, Soriano C, Baldasano J M, et al. Remote sensing of three-dimensional winds with elastic lidar: explanation of maximum cross-correlation method[J]. Boundary-Layer Meteorology, 2001, 101(3): 305-327.

    Buttler W T, Soriano C, Baldasano J M, et al. Remote sensing of three-dimensional winds with elastic lidar: explanation of maximum cross-correlation method[J]. Boundary-Layer Meteorology, 2001, 101(3): 305-327.

[16] Mayor S D, Dérian P, Mauzey C F, et al. Two-component wind fields from scanning aerosol lidar and motion estimation algorithms[J]. Proceedings of SPIE, 2013, 8872: 887208.

    Mayor S D, Dérian P, Mauzey C F, et al. Two-component wind fields from scanning aerosol lidar and motion estimation algorithms[J]. Proceedings of SPIE, 2013, 8872: 887208.

[17] 孙景群. 激光大气探测[M]. 北京: 科学出版社, 1986: 142- 180.

    孙景群. 激光大气探测[M]. 北京: 科学出版社, 1986: 142- 180.

    Sun JQ. Laser atmospheric detection[M]. Beijing: Science Press, 1986: 142- 180.

    Sun JQ. Laser atmospheric detection[M]. Beijing: Science Press, 1986: 142- 180.

[18] Elperin T, Kleeorin N, Rogachevskii I. Mechanisms of formation of aerosol and gaseous inhomogeneities in the turbulent atmosphere[J]. Atmospheric Research, 2000, 53(1/2/3): 117-129.

    Elperin T, Kleeorin N, Rogachevskii I. Mechanisms of formation of aerosol and gaseous inhomogeneities in the turbulent atmosphere[J]. Atmospheric Research, 2000, 53(1/2/3): 117-129.

[19] Zuev V E, Komarov V S, Kreminskii A V. Application of correlation lidar data to modeling and prediction of wind components[J]. Applied Optics, 1997, 36(9): 1906-1914.

    Zuev V E, Komarov V S, Kreminskii A V. Application of correlation lidar data to modeling and prediction of wind components[J]. Applied Optics, 1997, 36(9): 1906-1914.

[20] TomásS, SicardM, MasjuanJ, et al. A wind speed and fluctuation simulator for characterizing the wind lidar correlation method[C]//2007 IEEE International Geoscience and Remote Sensing Symposium, July 23-28, 2007, Barcelona, Spain. New York: IEEE, 2007: 2779- 2782.

    TomásS, SicardM, MasjuanJ, et al. A wind speed and fluctuation simulator for characterizing the wind lidar correlation method[C]//2007 IEEE International Geoscience and Remote Sensing Symposium, July 23-28, 2007, Barcelona, Spain. New York: IEEE, 2007: 2779- 2782.

[21] 黄滔, 张静, 杨丽寰. 基于相关法的测风激光雷达[J]. 红外与激光工程, 2008, 37(s3): 152-155.

    黄滔, 张静, 杨丽寰. 基于相关法的测风激光雷达[J]. 红外与激光工程, 2008, 37(s3): 152-155.

    Huang T, Zhang J, Yang L H. Wind lidar based on the correlation method[J]. Infrared and Laser Engineering, 2008, 37(s3): 152-155.

    Huang T, Zhang J, Yang L H. Wind lidar based on the correlation method[J]. Infrared and Laser Engineering, 2008, 37(s3): 152-155.

[22] Zuev V E, Vorevodin Y M, Matvienko G G, et al. Investigation of structure and dynamics of aerosol inhomogeneities in the ground layer of the atmosphere[J]. Applied Optics, 1977, 16(8): 2231-2235.

    Zuev V E, Vorevodin Y M, Matvienko G G, et al. Investigation of structure and dynamics of aerosol inhomogeneities in the ground layer of the atmosphere[J]. Applied Optics, 1977, 16(8): 2231-2235.

[23] 徐赤东, 纪玉峰. MPL-A1/T型微脉冲激光雷达的研制与应用[J]. 大气与环境光学学报, 2008, 3(5): 337-343.

    徐赤东, 纪玉峰. MPL-A1/T型微脉冲激光雷达的研制与应用[J]. 大气与环境光学学报, 2008, 3(5): 337-343.

    Xu C D, Ji Y F. Research and application of MPL-A1/T micro pulse lidar[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(5): 337-343.

    Xu C D, Ji Y F. Research and application of MPL-A1/T micro pulse lidar[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(5): 337-343.

张战盈, 蔡熠, 余东升, 陈海燕, 方蔚恺, 杨喆, 徐青山, 储焰南, 徐赤东. 基于相关计算的激光雷达二维风场探测[J]. 光学学报, 2019, 39(6): 0601003. Zhanying Zhang, Yi Cai, Dongsheng Yu, Haiyan Chen, Weikai Fang, Zhe Yang, Qingshan Xu, Yannan Chu, Chidong Xu. Two-Dimensional Wind Field Measurement Based on Lidar Signal Correlation[J]. Acta Optica Sinica, 2019, 39(6): 0601003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!