中国激光, 2013, 40 (5): 0503006, 网络出版: 2013-05-07   

激光驱动复合飞片加载金属箔板的成形能力

Forming Ability of the Metal Foil Forming by Laser-Driven Multi-Layered Flyer
作者单位
江苏大学机械工程学院, 江苏 镇江 212013
摘要
激光驱动飞片加载金属箔板成形技术是一种新型微成形技术,其飞片的结构和性能是影响该技术成形能力和质量的主要因素之一。通过Spitlight 2000 NdYAG激光器探究了复合飞片(主要由黑漆吸收层、聚酰亚胺隔热层和铝飞片组成)对激光驱动飞片加载金属箔板成形性能的影响。实验结果表明复合飞片能够增大工件的最大成形深度,同时工件形貌中心与模具中心的对中性更好,证明复合飞片在成形过程中对冲击波具有增压和均压作用,能够提高该技术的成形能力和质量。讨论了复合飞片提高成形能力和质量的原因,同时探究了激光能量和聚酰亚胺薄膜厚度对成形性能的影响。
Abstract
Metal foil forming by laser-driven flyer is a novel high-speed micro-forming technology. The structure and performance of the flyer are the main factors affecting the forming ability and the workpiece quality of this technology. A series of experiments are carried out by a Spitlight 2000 NdYAG laser in order to investigate the effects of the multi-layered flyer [composed of absorbing layer (black acrylic paint), insulating layer (polyimide film) and aluminum flyer] on the formability of metal foil forming by laser-driven flyer. Experimental results show that the multi-layered flyer can increase the maximum deformation depth of the workpiece and attain better consistency of the workpiece and the mold. Therefore, the multi-layered flyer can magnify and equalize the shock wave pressure in the forming process, which leads to the improvement in forming ability and workpiece quality. The reasons for the improvement of the forming quality using multi-layered flyers are discussed. The effects of the laser energy and the polyimide film thickness on forming ability are also studied.
参考文献

[1] P. Krehl, F. Schwirzke, A. W. Cooper. Correlation of stress-wave profiles and the dynamics of the plasma produced by laser irradiation of plane solid targets[J]. J. Appl. Phys., 1975, 46(10): 4400~4406

[2] D. L. Paisley. Confined plasma ablation for shock physics, plate launch, and material dynamics[C]. SPIE, 2006, 6261: 62611Y

[3] S. Cogan, E. Shirman, Y. Haas. Production efficiency of thin metal flyers formed by laser ablation[J]. J. Appl. Phys., 2005, 97(11): 113508

[4] R. Royal, C. Stein, C. Miglionico et al.. Laboratory simulation of hypervelocity debris[J]. International J. Impact Engineering, 1995, 17(4-6): 707~718

[5] D. C. Swift, D. L. Paisley, K. J. McClellan et al.. Equation of state of solid nickel aluminide[J]. Phys. Rev. B, 2007, 76(13): 134111~134125

[6] S. Katz, E. Grossmana, I. Gouzmana et al.. Response of composite materials to hypervelocity impact[J]. International J. Impact Engineering, 2008, 35(12): 1606~1611

[7] H. S. Niehoff, F. Vollertsen. Non-thermal laser stretch-forming[J]. Adv. Mater. Res., 2005, 6-8: 433~440

[8] H. Gao, C. Ye, G. J. Cheng. Deformation behaviors and critical parameters in microscale laser dynamic forming [J]. J. Manufacturing Science and Engineering, 2009, 131(5): 051011

[9] Y. Fan, Y. Wang, S. Vukelic et al.. Wave-solid interactions in laser-shock-induced deformation processes[J]. J. Appl. Phys., 2005, 98(10): 104904

[10] C. Gary, J. P. Daniel, M. Zhou. Microstructure and mechanical property characterizations of metal foil after microscale laser dynamic forming[J]. J. Appl. Phys., 2007, 101(6): 063108

[11] J. K. Di, M. Zhou, J. Li et al.. Micro-punching process based on spallation delamination induced by laser driven-flyer[J]. Appl. Surf. Sci., 2012, 258(7): 2339~2343

[12] 王霄, 杨昆, 刘会霞 等. 激光驱动飞片加载金属箔板成形及数值模拟[J]. 塑性工程学报, 2009, 16(1): 25~30

    Wang Xiao, Yang Kun, Liu Huixia et al.. Research and numerical simulation on metal foil forming under laser driven flyer[J]. J. Plasticity Engineering, 2009, 16(1): 25~30

[13] 范金荣, 黄舒, 周建忠 等. 激光微冲击成形技术分析与展望[J]. 激光与光电子学进展, 2012, 49(1): 010003

    Fan Jinrong, Huang Shu, Zhou Jianzhong et al.. Analysis and expectation of microscale laser shock forming[J]. Laser & Optoelectronics Progress, 2012, 49(1): 010003

[14] 刘会霞, 杨昆, 王匀 等. 激光驱动飞片加载金属箔板成形实验研究[J]. 中国激光, 2009, 36(5): 1292~1295

    Liu Huixia, Yang Kun, Wang Yun et al.. Research on micro-forming experiment of metal foil under laser driven flyer loading method[J]. Chinese J. Lasers, 2009, 36(5): 1292~1295

[15] 王霄, 杨昆, 刘会霞 等. 激光驱动飞片加载金属箔板成形的加载机制[J]. 中国激光, 2009, 36(6): 1569~1574

    Wang Xiao,Yang Kun, Liu Huixia et al.. Loading mechanism of metal foil forming under laser driven flyer[J]. Chinese J. Lasers, 2009, 36(6): 1569~1574

[16] H. X. Liu, Z. B. Shen, X. Wang et al.. Numerical simulation and experimentation of a novel laser indirect shock forming[J]. J. Appl. Phy., 2009, 106(6): 063107

[17] H. X. Liu, Z. B. Shen, X. Wang et al.. Feasibility investigations on a novel micro-embossing using laser-driven flyer[J]. Opt. Laser Technol., 2012, 44(6): 1987~1991

[18] H. X. Liu, H. J. Wang, Z. B. Shen et al.. The research on micro-punching by laser-driven flyer[J]. International J. Machine Tools & Manufacture, 2012, 54-55: 18~24

[19] A. V. Farnsworth, Jr.. Laser acceleration of thin flyers[C]. American Institute of Physics Conference Proceedings, 1996, 370: 1225~1228

[20] H. R. Brierley, D. M. Williamson, T. A. Vine. Improving laser-driven flyer efficiency with high absorptance layers[C]. American Institute of Physics Conference Proceedings, 2011, 1426: 315~318

[21] W. M. Trott. Investigation of the dynamic behavior of laser-driven flyers[C]. American Institute of Physics Conference Proceedings, 1994, 309: 1655~1658

[22] A. M. Frank, W. M. Trott. Investigation of thin laser-driven flyer plates using streak imaging and stop motion microphotography[C]. American Institute of Physics Conference Proceedings, 1996, 370: 1209~1212

[23] T. Kadono, M. Yoshida, E. Takahashi. Flyer acceleration by a high-power KrF laser with a long pulse duration[J]. J. Appl. Phys., 2000, 88(5): 2943~2947

[24] T. Kadono, M. Yoshida, N. K. Mitani. Flyer acceleration experiments using a KrF laser system with a long pulse duration and pressure and thickness of isobaric zone induced in impacted materials[J]. Laser and Particle Beams, 2001, 19(4): 623~630

[25] A. Benuzzi, M. Koenig, J. Krishnan et al.. Dynamics of laser produced shocks in foam-solid targets[J]. Physics of Plasmas, 1998, 5(8): 2827~2829

[26] K. A. Tanaka, M. Hara, N. Ozaki et al.. Multi-layered flyer accelerated by laser induced shock waves[J]. Physics of Plasmas, 2000, 7(2): 676~670

[27] 经福谦. 实验物态方程导引(第二版)[M]. 北京: 科学出版社, 1999. 59~61

    Jing Fuqian. Guidance of Experimental Equation of State (Second edition)[M]. Beijing: Science Press, 1999. 59~61

[28] Dimitri Batani, Antinio Balducci, Wigen Nazarov et al.. Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves[J]. Phys. Rev. E, 2001, 63(4): 046410

[29] 罗国强. W-Mo-Ti-Mg系波阻抗梯度飞片材料的准等熵压缩特性.[D]. 武汉: 武汉理工大学, 2004. 10~16

    Luo Guoqiang. Quasi-Isentropic Compressive Characteristics of W-Mo-Ti-Mg System Flyer-Plate with Graded Wave Impedance[D]. Wuhan: Wuhan University of Technology, 2004. 10~16

王霄, 刘辉, 沈宗宝, 周建忠, 胡杨, 杜道忠, 刘会霞. 激光驱动复合飞片加载金属箔板的成形能力[J]. 中国激光, 2013, 40(5): 0503006. Wang Xiao, Liu Hui, Shen Zongbao, Zhou Jianzhong, Hu Yang, Du Daozhong, Liu Huixia. Forming Ability of the Metal Foil Forming by Laser-Driven Multi-Layered Flyer[J]. Chinese Journal of Lasers, 2013, 40(5): 0503006.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!